交叉熵代价函数

1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w、b: w <—— w - η ∂C/∂w =
相关文章
相关标签/搜索