程序猿修仙之路--算法之希尔排序

自冯诺依曼开启大计算机时代以来,通过近一个世纪的蓬勃发展,已然成为一我的才众多的群体:IT江湖。 依附市场规律,江湖上悄然兴起数十宗门,其中以AI,大数据近期最为热门。 每一个宗门人才辈出,抢夺人才大战早已在阿里,腾讯,百度等数百个国度白热化。 IT江湖人士凭借JAVA,Python等武器,在精通各路内功心法的基础上在各个国度扬名立万,修仙成佛者众多,为后人树下追宠之榜样。算法

内功心法众多,其中以算法最为精妙,是修仙德道必经之路c#


虽然江湖上算法内功繁多,可是好的算法小编认为必须符合如下几个条件,方能真正提升习练者实力。数组

  • 时间复杂度(运行时间)

在算法时间复杂度维度,咱们主要对比较和交换的次数作对比,其余不交换元素的算法,主要会以访问数组的次数的维度作对比。bash

其实有不少修炼者对于算法的时间复杂度有点模糊,分不清什么所谓的 O(n),O(nlogn),O(logn)...等,也许下图对一些人有一些更直观的认识。网络

image

  • 空间复杂度(额外的内存使用)

排序算法的额外内存开销和运行时间同等重要。 就算一个算法时间复杂度比较优秀,空间复杂度很是差,使用的额外内存很是大,菜菜认为它也算不上一个优秀的算法。app

  • 结果的正确性

这个指标是菜菜本身加上的,我始终认为一个优秀的算法最终获得的结果必须是正确的。就算一个算法拥有很是优秀的时间和空间复杂度,可是结果不正确,致使修炼者经脉逆转,走火入魔,又有什么意义呢?dom

原理

在上一篇咱们修炼了插入排序,希尔排序(又名Shell's Sort)本质上属于插入排序,是插入排序的一种更高效升级版本,也称为缩小增量排序。同时希尔排序在时间复杂度上也是突破O(n²)的第一批算法之一。你说厉不厉害?~~性能

基本思想

经过直接插入排序的修炼,咱们知道直接插入排序是一种性能比较低的初级算法,对修炼者提高不是不大, 可是有一点优点那就是对于小型数组或者部分有序的数组很是高效,希尔排序就是基于这一点优点对直接插入排序进行了改良。换句话说直接插入排序低效的缘由在于无序,无序的程度越高越低效。例如:最小的元素初始位置在数组的另外一端,此元素要想到达正确位置,是须要一个一个位置前移,最终须要N-1次移动。如何改变这种状态正是希尔排序的突破口。 希尔排序的思想是把数组下标按照必定的增量h分组,而后对每组进行直接插入排序。在进行排序时,若是h很大,咱们就能将元素移动到很远的地方,为实现更小的h有序创造方便。而后增量h逐渐减少(每一个分组的元素量增多),直到h为1整个数组划分为一组,排序结束。学习

也许一张更直观的图比上千句话效果都好

image

复杂度

  • 时间复杂度

最坏时间复杂度依然为O(n²),一些通过优化的增量序列如Hibbard通过复杂证实可以使得最坏时间复杂度为O(n^3/2),最好状况下为O(n)属于线性复杂度。大数据

  • 空间复杂度

优于希尔排序本质上属于插入排序升级版,因此空间上和直接插入排序一致为O(1),在常数级别。

性能和特色

  • 希尔排序之因此高效是由于它权衡了子数组的规模和有序性。排序之初各个子数组都很短,这种状况很适合插入排序。
  • 对于增量h的选择对希尔排序很是重要,直接影响其性能。其实除了h的选择以外,h之间的数学性质也影响希尔排序的性能,好比它们的公因子等。不少论文研究了各类不一样的递增序列,但都没法证实某个序列是最好的。对于某些基础递增的序列其实在性能上和某些复杂的序列接近,因此不少状况下咱们没有必要花大力气在复杂序列上的研究上。
适用场景

与插入排序不一样,希尔排序能够适用于大型数组,它对任意排序的数组表现良好,虽然不是最好。实验证实,希尔排序比咱们上两章学习的选择排序和插入排序要快的多,而且数组越大,优点越大。 目前最重要的结论是:希尔排序的运行时间达不到平方级别。 对于中等大小的数组希尔排序的时间是在可接受范围以内的,由于它的代码量很小,并且须要的额外空间很小,几乎能够忽略。对于其余更高效的其余算法,可能比希尔排序更高效,可是代码也更复杂,性能上比希尔排序也高不了几倍,因此在不少状况下希尔排序成为首选的算法。

其余

直接插入排序是稳定的,希尔排序呢?

因为屡次插入排序,咱们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不一样的插入排序过程当中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,因此希尔排序排序是不稳定的。

试炼一发吧

c# 武器版
static void Main(string[] args)
        {
            List<int> data = new List<int>() ;
            for (int i = 0; i < 11; i++)
            {
                
                data.Add(new Random(Guid.NewGuid().GetHashCode()).Next(1, 100));
            }
            //打印原始数组值
            Console.WriteLine($"原始数据: {string.Join(",", data)}");
            int n = data.Count;
            int h = 1;
            //计算初始化增量,网络提供,听说比较好的递增因子
            while (h < n / 3)
            {
                h = 3 * h + 1;
            }
            Console.WriteLine($"初始化增量:{h}");
            while (h >= 1)
            {
                for (int i = h; i < n; i++)
                {
                    for (int j = i; j >=h&&data[j]<data[j-h]; j-=h)
                    {
                        //异或法 交换两个变量,不用临时变量
                        data[j] = data[j] ^ data[j - 1];
                        data[j - 1] = data[j] ^ data[j - 1];
                        data[j] = data[j] ^ data[j - 1];
                    }
                }
                h = h / 3;
            }


            //打印排序后的数组
            Console.WriteLine($"排序数据: {string.Join(",", data)}");
            Console.Read();
        }
复制代码

运行结果:

原始数据: 47,50,32,42,44,79,10,16,51,74,52

初始化增量:4

排序数据: 10,16,32,42,44,47,50,51,52,74,79

Golang 武器版
package main

import (
	"fmt"
	"math/rand"
)

func main() {
	var data []int
	for i := 0; i < 11; i++ {
		data = append(data, rand.Intn(100))
	}
	fmt.Println(data)
	var n = len(data)
	var h = 1
	for h < n/3 {
		h = 3*h + 1
	}
	fmt.Println(h)
	for h >= 1 {
		for i := h; i < n; i++ {
			for j := i; j >= h && data[j] < data[j-h]; j -= h {
				data[j], data[j-h] = data[j-h], data[j]
			}
		}
		h = h / 3
	}
	fmt.Println(data)
}
复制代码

运行结果:

[81 87 47 59 81 18 25 40 56 0 94]

4

[0 18 25 40 47 56 59 81 81 87 94]


添加关注,查看更精美版本,收获更多精彩

image
相关文章
相关标签/搜索