机器学习记录1

集成学习介绍 这篇文章主要讲解集成学习三种方法。集成学习(Emsemble Learning)是通过结合几个模型的元算法(meta-algorithm),使得最后的表现比任何一个模型好。在Kaggle,集成学习是取得高排名的不二法宝。本文介绍集成学习的三种模式,以便帮助读者对自己的最后模型进行决策。这三种方法以及他们的效果分别是: Bagging:减少 variance boosting: 减少
相关文章
相关标签/搜索