机器学习中梯度下降的几种方式

批量梯度下降 定义:批量梯度下降的一次训练喂入训练集中的所有数据,使用所有数据来更新权重,也就是batch_size=训练集大小 算法 3. 特点 求和中的运算都是向量运算 参数的更新需要计算所有数据的平均值之后才能进行更新,更新缓慢,时间复杂度是O(n),但是下降路径十分平滑 随机梯度下降 定义:每次进行参数更新的时候仅仅使用数据集中的一个数据,也即batch_size = 1 算法 特点 更新
相关文章
相关标签/搜索