boosting和bootstrap区别

bootstrap、boosting是机器学习中几种常用的重采样方法。其中bootstrap重采样方法主要用于统计量的估计,boosting方法则主要用于多个子分类器的组合。 bootstrap:估计统计量的重采样方法(推荐学习:《0基础入门python》) bootstrap方法是从大小为n的原始训练数据集DD中随机选择n个样本点组成一个新的训练集,这个选择过程独立重复B次,然后用这B个数据集对
相关文章
相关标签/搜索