参考资料:html
python机器学习库scikit-learn简明教程之:随机森林 python
http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynblinux
基于SIFT特征和SVM的图像分类github
scikit-learn sklearn 0.18 官方文档中文版 算法
只需十四步:从零开始掌握 Python 机器学习(附资源) dom
https://github.com/jakevdp/sklearn_pycon2015 python2.7
官网:http://scikit-learn.org/stable/机器学习
Scikit-learn (sklearn) 优雅地学会机器学习 (莫烦 Python 教程) ide
python机器学习库scikit-learn简明教程之:AdaBoost算法
http://www.docin.com/p-1775095945.html
https://www.bilibili.com/video/av22530538/?p=6
https://github.com/Fdevmsy/Image_Classification_with_5_methods
https://github.com/huangchuchuan/SVM-HOG-images-classifier
https://blog.csdn.net/always2015/article/details/47100713
DBScan http://www.javashuo.com/article/p-zcsnpguy-ce.html
carto@cartoPC:~$ python Python 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import numpy as np >>> from sklearn import datasets >>> from sklearn.cross_validation import train_test_split /usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20.", DeprecationWarning) >>> from sklearn.neighbors import KNeighborsClassifier >>> iris=datasets.load_iris() >>> iris_X=iris.data >>> iris_y=iris.target >>> print(iris_X[:2,:]) [[ 5.1 3.5 1.4 0.2] [ 4.9 3. 1.4 0.2]] >>> print(iris_y) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] >>> X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3) >>> print(y_train) [2 1 0 0 0 2 0 0 1 1 2 2 1 1 2 2 2 0 1 0 2 2 1 1 1 1 1 0 1 1 0 2 1 0 0 2 2 0 0 2 1 0 0 2 1 2 1 2 1 1 1 2 1 2 0 2 0 1 1 2 1 0 1 2 2 0 2 2 1 0 1 1 2 2 1 0 1 1 2 0 0 1 0 1 0 2 0 1 1 0 2 1 2 0 2 0 2 0 2 1 0 2 0 2 2] >>> knn=KNeighborsClassifier() >>> knn.fit() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: fit() takes exactly 3 arguments (1 given) >>> knn.fit(X_train,y_train) KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform') >>> print(knn.predict(X_test)) [1 1 2 0 1 1 1 1 2 0 0 2 0 1 0 0 0 1 2 2 2 2 0 1 2 0 1 2 2 0 1 2 0 0 1 0 0 0 0 1 0 1 1 2 0] >>> print(y_test) [1 1 2 0 1 1 1 1 2 0 0 2 0 1 0 0 0 1 2 2 2 2 0 1 2 0 1 2 2 0 2 2 0 0 2 0 0 0 0 1 0 1 1 2 0] >>>
import pandas as pd import numpy as np from sklearn import datasets from sklearn import svm from sklearn.model_selection import train_test_split def load_data(): iris=datasets.load_iris() X_train,X_test,y_train,y_test=train_test_split( iris.data,iris.target,test_size=0.10,random_state=0) return X_train,X_test,y_train,y_test def test_LinearSVC(X_train,X_test,y_train,y_test): cls=svm.LinearSVC() cls.fit(X_train,y_train) print('Coefficients:%s, intercept %s'%(cls.coef_,cls.intercept_)) print('Score: %.2f' %cls.score(X_test,y_test)) if __name__=="__main__": X_train,X_test,y_train,y_test=load_data() test_LinearSVC(X_train,X_test,y_train,y_test)
调用
carto@cartoPC:~/python_ws$ python svmtest2.py Coefficients:[[ 0.18424504 0.45123335 -0.80794237 -0.45071267] [-0.13381099 -0.75235247 0.57223898 -1.11494325] [-0.7943601 -0.95801711 1.31465593 1.8169808 ]], intercept [ 0.10956304 1.86593164 -1.72576407] Score: 1.00