感谢 caq 的奇奇怪怪的组合数学笔记,实在看不下去了!html
文中如无特殊说明,只有在出现 \(A_{n}^{m}\) 的式子中,组合数才使用 \(C_{n}^{m}\),其他一概用 \(\dbinom{n}{m}\)。spa
暂无htm
计算式会在正文给出。blog
从 \(n\) 个数中选择 \(m\) 个数,与排列顺序有关的方案数被称为 \(n\) 排列 \(m\),记做 \(A_{n}^{m}\)。get
特别的,当 \(n = m\) 时,\(A_{n}^{m}\),被称为 \(n\) 或 \(m\) 的全排列。数学
从 \(n\) 个数中选择 \(m\) 个数,只与选择的数有关的方案数被称为 \(n\) 选 \(m\),记做 \(\dbinom{n}{m}\) 或 \(C_{n}^{m}\)。class
实际应用中,组合的应用范围远远比排列要广。排列常常只被使用全排列这一种形式来辅助组合的计算。date
组合:方法
排列:im
所以那么显然有:
全排列:
排列与组合的关系:
接下来咱们把目光重点放在组合上。
下面提供四种计算组合数的计算式。
待填。
第一个,预处理出阶乘便可。
若是要求在取模意义下,分母部分能够预处理阶乘的逆元。
预处理时,只需计算出最大可能的 \(n\) 的阶乘的逆元,而后倒推便可。
复杂度是 \(O(n)\) 的,通常用于计算 \(n, m \le 10^6\) 范围内的组合数,是颇有用的组合数计算方式。
具体实现能够参考个人 这篇题解。
同时,这个方法也能够用来预处理一整个数列的乘法逆元。不难推导,读者能够自行思考一下。
第二个,是组合数的递推式。
若是把组合数的 \(n,m\) 较小的答案算出来,不难发现就是个“杨辉三角”。
所以就能够递推了。
这个方法的时空复杂度都是 \(\mathcal O(n^2)\) 的,不如第一个优秀,这种方法能实现的,第一种方法都能代替。
第三个,是组合数的另外一种计算式。
这种方法把直接用组合数计算式 \(\dfrac{n!}{m!(n - m)!}\) 分子中的 \(n!\)、分母中的 \(m!\) 拆开来,成为:
即
咱们知道,当 \(m = 0\) 时,不管 \(n\) 为什么值, \(\dbinom{n}{m}\) 恒为 \(1\)。
所以,这种方法能够一直迭代下去,直到表示到 \(m = 1\)。
经常使用于 \(n\) 巨大(通常在 \(10^9\) 级别),而 \(m\) 较小(通常在 \(10^5\) 级别)的时候组合数的计算。
实现时能够预处理 \(1\) 到 \(m\) 的逆元。
第四种,待填。