监督学习和无监督学习

监督学习 定义:根据已有的数据集,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。 也就是说,在监督学习中训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。 通俗一点,可以把机器学习理解为我们教机器如何做事情。 监督学习的分类:回归(Regression)、分类(Cl
相关文章
相关标签/搜索