Decision tree——决策树

基本流程   决策树是通过分次判断样本属性来进行划分样本类别的机器学习模型。每个树的结点选择一个最优属性来进行样本的分流,最终将样本类别划分出来。     决策树的关键就是分流时最优属性$a$的选择。使用所谓信息增益$Gain(D,a)$来判别不同属性的划分性能,即划分前样本类别的信息熵,减去划分后样本类别的平均信息熵,显然信息增益越大越好: $\text{Ent}(D)=-\sum\limits
相关文章
相关标签/搜索