机器学习实战笔记:树回归-CART算法

 前言 在上一章中我们使用了ID3算法来构造树。ID3的做法是每次选取当前最佳的特征来分割数据,并按照该特征的所有可能取值来切分。也就是说,如果一个特征有4种取值,那么数据将被切成4份。一旦按某特征切分后,该特征在之后的算法执行过程中将不会再起作用,所以有观点认为这种切分方式过于迅速。另外一种方法是二元切分法,即每次把数据集切成两份。如果数据的某特征值等于切分所要求的值,那么这些数据就进人树的左子
相关文章
相关标签/搜索