Bagging与Boosting的区别与联系

1 Bagging与Boosting的区别与联系 Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好。 1.1 Bagging介绍 用抽样的方式从原始样本中进行有放回的多次抽样(或者是抽特征),这种方法叫做Bootstraping,抽取k次每次抽取n个样本,这样就生成了k个样本容量为n的数据集。原始数据集中的样本
相关文章
相关标签/搜索