JVM_03 运行时数据区1-[程序计数器+虚拟机栈+本地方法栈]

完整JVM学习笔记请戳

内存与线程

01 内存

内存是很是重要的系统资源,是硬盘和cpu的中间仓库及桥梁,承载着操做系统和应用程序的实时运行。JVM内存布局规定了JAVA在运行过程当中内存申请、分配、管理的策略,保证了JVM的高效稳定运行。不一样的jvm对于内存的划分方式和管理机制存在着部分差别(对于Hotspot主要指方法区)java

jdk8之后 ,方法区就是元数据区
(图源阿里)JDK8的元数据区+JIT编译产物 就是JDK8之前的方法区

02 分区介绍

java虚拟机定了了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机启动而建立,随着虚拟机退出而销毁。另一些则是与县城一一对应的,这些与线程对应的数据区域会随着线程开始和结束而建立和销毁。
如图,灰色的区域为单独线程私有的,红色的为多个线程共享的,即python

  • 每一个线程:独立包括程序计数器、栈、本地栈
  • 线程间共享:堆、堆外内存(方法区、永久代或元空间、代码缓存)

通常来讲,jvm优化95%是优化堆区,5%优化的是方法区

03 线程

  • 线程是一个程序里的运行单元,JVM容许一个程序有多个线程并行的执行;
  • 在HotSpot JVM,每一个线程都与操做系统的本地线程直接映射。
    • 当一个java线程准备好执行之后,此时一个操做系统的本地线程也同时建立。java线程执行终止后。本地线程也会回收。
  • 操做系统负责全部线程的安排调度到任何一个可用的CPU上。一旦本地线程初始化成功,它就会调用java线程中的run()方法.

2.1 JVM系统线程

  • 若是你使用jconsole或者任何一个调试工具,都能看到在后台有许多线程在运行。这些后台线程不包括调用main方法的main线程以及全部这个main线程本身建立的线程;
  • 这些主要的后台系统线程在HotSpot JVM里主要是如下几个:
    • 虚拟机线程L这种线程的操做时须要JVM达到安全点才会出现。这些操做必须在不一样的线程中发生的缘由是他们都须要JVM达到安全点,这样堆才不会变化。这种线程的执行包括“stop-the-world”的垃圾收集,线程栈收集,线程挂起以及偏向锁撤销
    • 周期任务线程:这种线程是时间周期事件的提现(好比中断),他们通常用于周期性操做的调度执行。
    • GC线程:这种线程对于JVM里不一样种类的垃圾收集行为提供了支持
    • 编译线程:这种线程在运行时会降字节码编译成本地代码
    • 信号调度线程:这种线程接收信号并发送给JVM,在它内部经过调用适当的方法进行处理。

1.程序计数器(PC寄存器)

JVM中的程序计数寄存器(Program Counter Register)中,Register的命名源于CPU的寄存器,寄存器存储指令相关的现场信息。CPU只有把数据装载到寄存器才可以运行。JVM中的PC寄存器是对屋里PC寄存器的一种抽象模拟git

1.1 做用

PC寄存器是用来存储指向下一条指令的地址,也即将将要执行的指令代码。由执行引擎读取下一条指令。github

  • 它是一块很小的内存空间,几乎能够忽略不计。也是运行速度最快的存储区域
  • 在jvm规范中,每一个线程都有它本身的程序计数器,是线程私有的,生命周期与线程的生命周期保持一致
  • 任什么时候间一个线程都只有一个方法在执行,也就是所谓的当前方法。程序计数器会存储当前线程正在执行的java方法的JVM指令地址;或者,若是实在执行native方法,则是未指定值(undefined)。
  • 它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都须要依赖这个计数器来完成
  • 字节码解释器工做时就是经过改变这个计数器的值来选取吓一跳须要执行的字节码指令
  • 它是惟一一个在java虚拟机规范中没有规定任何OOM状况的区域

1.2 代码示例

利用javap -v xxx.class反编译字节码文件,查看指令等信息面试

1.3 面试常问

1.使用PC寄存器存储字节码指令地址有什么用呢?/ 为何使用PC寄存器记录当前线程的执行地址呢? 由于CPU须要不停的切换各个线程,这时候切换回来之后,就得知道接着从哪开始继续执行
JVM的字节码解释器就须要经过改变PC寄存器的值来明确下一条应该执行什么样的字节码指令

2.PC寄存器为何会设定为线程私有
咱们都知道所谓的多线程在一个特定的时间段内指回执行其中某一个线程的方法,CPU会不停滴作任务切换,这样必然会致使常常中断或恢复,如何保证分毫无差呢?为了可以准确地记录各个线程正在执行的当前字节码指令地址,最好的办法天然是为每个线程都分配一个PC寄存器,这样一来各个线程之间即可以进行独立计算,从而不会出现相互干扰的状况。
因为CPU时间片轮限制,众多线程在并发执行过程当中,任何一个肯定的时刻,一个处理器或者多核处理器中的一个内核,只会执行某个线程中的一条指令。
这样必然致使常常中断或恢复,如何保证分毫无差呢?每一个线程在建立后,都会产生本身的程序计数器和栈帧,程序计数器在各个线程之间互不影响。算法

CPU时间片

CPU时间片即CPU分配各各个程序的时间,每一个线程被分配一个时间段。称做它的时间片。
在宏观上:咱们能够同时打开多个应用程序,每一个程序并行不悖,同时运行。 但在微观上:因为只有一个CPU,一次只能处理程序要求的一部分,如何处理公平,一种方法就是引入时间片,每一个程序轮流执行。
并行与并发
并行:同一时间多个线程同时执行;
并发:一个核快速切换多个线程,让它们依次执行,看起来像并行,其实是并发编程


* 2.虚拟机栈

2.1概述

2.1.1 背景

因为跨平台性的设计,java的指令都是根据栈来设计的。不一样平台CPU架构不一样,因此不能设计为基于寄存器的。
优势是跨平台,指令集小,编译器容易实现,缺点是性能降低,实现一样的功能须要更多的指令。数组

2.1.2 内存中的堆与栈

  • 栈是运行时的单位,而堆是存储的单位
    即:栈解决程序的运行问题,即程序如何执行,或者说如何处理数据。堆解决的是数据存储的问题,即数据怎么放、放在哪儿。
  • 通常来说,对象主要都是放在堆空间的,是运行时数据区比较大的一块
  • 栈空间存放 基本数据类型的局部变量,以及引用数据类型的对象的引用

2.1.3 虚拟机栈是什么

  • java虚拟机栈(Java Virtual Machine Stack),早期也叫Java栈。 每一个线程在建立时都会建立一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应这个一次次的java方法调用。它是线程私有的
  • 生命周期和线程是一致的
  • 做用:主管java程序的运行,它保存方法的局部变量(8种基本数据类型、对象的引用地址)、部分结果,并参与方法的调用和返回。
    • 局部变量:相对于成员变量(或属性)
    • 基本数据变量: 相对于引用类型变量(类,数组,接口)

2.1.4 栈的特色

  • 栈是一种快速有效的分配存储方式,访问速度仅次于PC寄存器(程序计数器)
  • JVM直接对java栈的操做只有两个
    • 每一个方法执行,伴随着进栈(入栈,压栈)
    • 执行结束后的出栈工做
  • 对于栈来讲不存在垃圾回收问题

2.1.5 栈中可能出现的异常

java虚拟机规范容许Java栈的大小是动态的或者是固定不变的缓存

  • 若是采用固定大小的Java虚拟机栈,那每个线程的java虚拟机栈容量能够在线程建立的时候独立选定。若是线程请求分配的栈容量超过java虚拟机栈容许的最大容量,java虚拟机将会抛出一个 StackOverFlowError异常
/**
 * 演示栈中的异常
 */
public class StackErrorTest {
    public static void main(String[] args) {
        main(args);
    }
}
复制代码
  • 若是java虚拟机栈能够动态拓展,而且在尝试拓展的时候没法申请到足够的内存,或者在建立新的线程时没有足够的内存去建立对应的虚拟机栈,那java虚拟机将会抛出一个 OutOfMemoryError异常

2.1.6设置栈的内存大小

咱们可使用参数-Xss选项来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度。 (IDEA设置方法:Run-EditConfigurations-VM options 填入指定栈的大小-Xss256k)安全

/**
 * 演示栈中的异常
 *
 * 默认状况下:count 10818
 * 设置栈的大小: -Xss256k count 1872
 */
public class StackErrorTest {
    private static int count = 1;
    public static void main(String[] args) {
        System.out.println(count);
        count++;
        main(args);
    }
}
复制代码

2.2 栈的存储结构和运行原理

2.2.1

  • 每一个线程都有本身的栈,栈中的数据都是以栈帧(Stack Frame)的格式存在
  • 在这个线程上正在执行的每一个方法都对应各自的一个栈帧
  • 栈帧是一个内存区块,是一个数据集,维系着方法执行过程当中的各类数据信息
  • JVM直接对java栈的操做只有两个,就是对栈帧的压栈和出栈,遵循先进后出/后进先出的和原则。
  • 在一条活动线程中,一个时间点上,只会有一个活动的栈帧。即只有当前正在执行的方法的栈帧(栈顶栈帧)是有效的,这个栈帧被称为当前栈帧(Current Frame),与当前栈帧对应的方法就是当前方法(Current Frame)
  • 执行引擎运行的全部字节码指令只针对当前栈帧进行操做
  • 若是在该方法中调用了其余方法,对应的新的栈帧会被建立出来,放在栈的顶端,成为新的当前栈帧。
  • 不一样线程中所包含的栈帧是不容许相互引用的,即不可能在另外一个栈帧中引用另一个线程的栈帧
  • 若是当前方法调用了其余方法,方法返回之际,当前栈帧会传回此方法的执行结果给前一个栈帧,接着,虚拟机会丢弃当前栈帧,使得前一个栈帧从新成为当前栈帧
  • Java方法有两种返回函数的方式,一种是正常的函数返回,使用return指令;另一种是抛出异常。无论使用哪一种方式,都会致使栈帧被弹出。

/**
 * 栈帧
 */
public class StackFrameTest {
    public static void main(String[] args) {
        StackFrameTest test = new StackFrameTest();
        test.method1();
        //输出 method1()和method2()都做为当前栈帧出现了两次,method3()一次
//        method1()开始执行。。。
//        method2()开始执行。。。
//        method3()开始执行。。。
//        method3()执行结束。。。
//        method2()执行结束。。。
//        method1()执行结束。。。
    }

    public void method1(){
        System.out.println("method1()开始执行。。。");
        method2();
        System.out.println("method1()执行结束。。。");
    }

    public int method2(){
        System.out.println("method2()开始执行。。。");
        int i = 10;
        int m = (int) method3();
        System.out.println("method2()执行结束。。。");
        return i+m;
    }

    public double method3(){
        System.out.println("method3()开始执行。。。");
        double j = 20.0;
        System.out.println("method3()执行结束。。。");
        return j;
    }

}
复制代码

2.2.2 栈帧的内部结构

每一个栈帧中存储着:

  • 局部变量表(Local Variables)
  • 操做数栈(Operand Stack)(或表达式栈)
  • 动态连接(Dynamic Linking)(或执行运行时常量池的方法引用)
  • 方法返回地址(Return Adress)(或方法正常退出或者异常退出的定义)
  • 一些附加信息

2.3 局部变量表(Local Variables)

2.3.1 概述

  • 局部变量表也被称之为局部变量数组或本地变量表
  • 定义为一个数字数组,主要用于存储方法参数和定义在方法体内的局部变量这些数据类型包括各种基本数据类型、对象引用(reference),以及returnAddressleixing
  • 因为局部变量表是创建在线程的栈上,是线程私有的数据,所以不存在数据安全问题
  • 局部变量表所需的容量大小是在编译期肯定下来的,并保存在方法的Code属性的maximum local variables数据项中。在方法运行期间是不会改变局部变量表的大小的
  • 方法嵌套调用的次数由栈的大小决定。通常来讲,栈越大,方法嵌套调用次数越多。对一个函数而言,他的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以知足方法调用所需传递的信息增大的需求。进而函数调用就会占用更多的栈空间,致使其嵌套调用次数就会减小。
  • 局部变量表中的变量只在当前方法调用中有效。在方法执行时,虚拟机经过使用局部变量表完成参数值到参数变量列表的传递过程。当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。

利用javap命令对字节码文件进行解析查看局部变量表,如图:

也能够在IDEA 上安装jclasslib byte viewcoder插件查看字节码信息,以main()方法为例

2.3.2 变量槽slot的理解与演示

  • 参数值的存放老是在局部变量数组的index0开始,到数组长度-1的索引结束
  • 局部变量表,最基本的存储单元是Slot(变量槽)
  • 局部变量表中存放编译期可知的各类基本数据类型(8种),引用类型(reference),returnAddress类型的变量。
  • 在局部变量表里,32位之内的类型只占用一个slot(包括returnAddress类型),64位的类型(long和double)占用两个slot。
    • byte、short、char、float在存储前被转换为int,boolean也被转换为int,0表示false,非0表示true;
    • long和double则占据两个slot。
  • JVM会为局部变量表中的每个slot都分配一个访问索引,经过这个索引便可成功访问到局部变量表中指定的局部变量值
  • 当一个实例方法被调用的时候,它的方法参数和方法体内部定义的局部变量将会按照顺序被复制到局部变量表中的每个slot上
  • 若是须要访问局部变量表中一个64bit的局部变量值时,只须要使用签一个索引便可。(好比:访问long或者double类型变量)
  • 若是当前帧是由构造方法或者实例方法建立的,那么该对象引用this将会存放在index为0的slot处,其他的参数按照参数表顺序排列。
public class LocalVariablesTest {

    private int count = 1;
    //静态方法不能使用this
    public static void testStatic(){
        //编译错误,由于this变量不存在与当前方法的局部变量表中!!!
        System.out.println(this.count);
    }
}
复制代码

2.3.3 slot的重复利用

栈帧中的局部变量表中的槽位是能够重复利用的,若是一个局部变量过了其做用域,那么在其做用域以后申明的新的局部变量就颇有可能会复用过时局部变量的槽位,从而达到节省资源的目的。

private void test2() {
        int a = 0;
        {
            int b = 0;
            b = a+1;
        }
        //变量c使用以前以及经销毁的变量b占据的slot位置
        int c = a+1;
    }
复制代码

2.3.4 静态变量与局部变量的对比及小结

变量的分类:

  • 按照数据类型分:
    • ①基本数据类型;
    • ②引用数据类型;
  • 按照在类中声明的位置分:
    • ①成员变量:在使用前,都经历过默认初始化赋值
      • static修饰:类变量:类加载linking的准备阶段给类变量默认赋值——>初始化阶段给类变量显式赋值即静态代码块赋值;
      • 不被static修饰:实例变量:随着对象的建立,会在堆空间分配实例变量空间,并进行默认赋值
    • ②局部变量:在使用前,必需要进行显式赋值的!不然,编译不经过 补充:
  • 在栈帧中,与性能调优关系最为密切的部分就是局部变量表。在方法执行时,虚拟机使用局部变量表完成方法的传递
  • 局部变量表中的变量也是重要的垃圾回收根节点,只要被局部变量表中直接或间接引用的对象都不会被回收

2.4 操做数栈(Operand Stack)

栈 :可使用数组或者链表来实现

  • 每个独立的栈帧中除了包含局部变量表之外,还包含一个后进先出的操做数栈,也能够成为表达式栈
  • 操做数栈,在方法执行过程当中,根据字节码指令,往栈中写入数据或提取数据,即入栈(push)或出栈(pop)
    • 某些字节码指令将值压入操做数栈,其他的字节码指令将操做数取出栈,使用他们后再把结果压入栈。(如字节码指令bipush操做)
    • 好比:执行复制、交换、求和等操做

2.4.1 概述

  • 操做数栈,主要用于保存计算过程的中间结果,同时做为计算过程当中变量临时的存储空间。
  • 操做数栈就是jvm执行引擎的一个工做区,当一个方法开始执行的时候,一个新的栈帧也会随之被建立出来,这个方法的操做数栈是空的
  • 每个操做数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译器就定义好了,保存在方法的code属性中,为max_stack的值。
  • 栈中的任何一个元素都是能够任意的java数据类型
    • 32bit的类型占用一个栈单位深度
    • 64bit的类型占用两个栈深度单位
  • 操做数栈并不是采用访问索引的方式来进行数据访问的,而是只能经过标砖的入栈push和出栈pop操做来完成一次数据访问
  • 若是被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操做数栈中,并更新PC寄存器中下一条须要执行的字节码指令。
  • 操做数栈中的元素的数据类型必须与字节码指令的序列严格匹配,这由编译器在编译期间进行验证,同时在类加载过程当中的类验证阶段的数据流分析阶段要再次验证。
  • 另外,咱们说Java虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操做数栈。
    结合上图结合下面的图来看一下一个方法(栈帧)的执行过程
    ①15入栈;②存储15,15进入局部变量表
    ③压入8;④存储8,8进入局部变量表;

⑤从局部变量表中把索引为1和2的是数据取出来,放到操做数栈;⑥iadd相加操做,8和15出栈

⑦iadd操做结果23入栈;⑧将23存储在局部变量表索引为3的位置上

2.4.2 i++ 和 ++i的区别

2.4.3 栈顶缓存技术ToS(Top-of-Stack Cashing)

  • 基于栈式架构的虚拟机所使用的零地址指令更加紧凑,但完成一项操做的时候必然须要使用更多的入栈和出栈指令,这同时也就意味着将须要更多的指令分派(instruction dispatch)次数和内存读/写次数
  • 因为操做数是存储在内存中的,所以频繁地执行内存读/写操做必然会影响执行速度。为了解决这个问题,HotSpot JVM的设计者们提出了栈顶缓存技术,将栈顶元素所有缓存在屋里CPU的寄存器中,以此下降对内存的读/写次数,提高执行疫情的执行效率

2.5 动态连接(Dynamic Linking)

  • 每个栈帧内部都包含一个指向运行时常量池或该栈帧所属方法的引用。包含这个引用的目的就是为了支持当前方法的代码可以实现动态连接。好比invokedynamic指令
  • 在Java源文件被编译成字节码文件中时,全部的变量和方法引用都做为符号引用(symbolic Refenrence)保存在class文件的常量池里。好比:描述一个方法调用了另外的其余方法时,就是经过常量池中指向方法的符号引用来表示的,那么动态连接的做用就是为了将这些符号引用转换为调用方法的直接引用。

为何须要常量池呢
常量池的做用,就是为了提供一些符号和常量,便于指令的识别。

2.5.1方法的调用

** 在JVM中,将符号引用转换为调用方法的直接引用与方法的绑定机制相关 **

  • 静态连接
    当一个 字节码文件被装载进JVM内部时,若是被调用的目标方法在编译期可知,且运行期保持不变时。这种状况下将调用方法的符号引用转换为直接引用的过程称之为静态连接。
  • 动态连接
    若是被调用的方法在编译期没法被肯定下来,也就是说,只可以在程序运行期将调用方法的符号引用转换为直接引用,因为这种引用转换过程具有动态性,所以也就被称之为动态连接。

对应的方法的绑定机制为:早起绑定(Early Binding)和晚期绑定(Late Bingding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。

  • 早期绑定
    早期绑定就是指被调用的目标方法若是在编译期可知,且运行期保持不变时,便可将这个方法与所属的类型进行绑定,这样一来,因为明确了被调用的目标方法到底是哪个,所以也就可使用静态连接的方式将符号引用转换为直接引用。
  • 晚期绑定
    若是被调用的方法在编译期没法被肯定下来,只可以在程序运行期根据实际的类型绑定相关的方法,这种绑定方式也就被称之为晚期绑定。

随着高级语言的横空出世,相似于java同样的基于面向对象的编程语言现在愈来愈多,尽管这类编程语言在语法风格上存在必定的差异,可是它们彼此之间始终保持着一个共性,那就是都支持封装,集成和多态等面向对象特性,既然这一类的编程语言具有多态特性,那么天然也就具有早期绑定和晚期绑定两种绑定方式。
Java中任何一个普通的方法其实都具有虚函数的特征,它们至关于C++语言中的虚函数(C++中则须要使用关键字virtual来显式定义)。若是在Java程序中不但愿某个方法拥有虚函数的特征时,则可使用关键字final来标记这个方法。

2.5.2虚方法和非虚方法

子类对象的多态性使用前提:①类的继承关系②方法的重写

非虚方法

  • 若是方法在编译器就肯定了具体的调用版本,这个版本在运行时是不可变的。这样的方法称为非虚方法
  • 静态方法、私有方法、final方法、实例构造器、父类方法都是非虚方法
  • 其余方法称为虚方法
虚拟机中提供了如下几条方法调用指令:

普通调用指令:
1.invokestatic:调用静态方法,解析阶段肯定惟一方法版本;
2.invokespecial:调用方法、私有及弗雷方法,解析阶段肯定惟一方法版本;
3.invokevirtual调用全部虚方法;
4.invokeinterface:调用接口方法;
动态调用指令:
5.invokedynamic:动态解析出须要调用的方法,而后执行 .
前四条指令固化在虚拟机内部,方法的调用执行不可人为干预,而invokedynamic指令则支持由用户肯定方法版本。其中invokestatic指令和invokespecial指令调用的方法称为非虚方法,其他的(final修饰的除外)称为虚方法。

/**
 * 解析调用中非虚方法、虚方法的测试
 */
class Father {
    public Father(){
        System.out.println("Father默认构造器");
    }

    public static void showStatic(String s){
        System.out.println("Father show static"+s);
    }

    public final void showFinal(){
        System.out.println("Father show final");
    }

    public void showCommon(){
        System.out.println("Father show common");
    }

}

public class Son extends Father{
    public Son(){
        super();
    }

    public Son(int age){
        this();
    }

    public static void main(String[] args) {
        Son son = new Son();
        son.show();
    }

    //不是重写的父类方法,由于静态方法不能被重写
    public static void showStatic(String s){
        System.out.println("Son show static"+s);
    }

    private void showPrivate(String s){
        System.out.println("Son show private"+s);
    }

    public void show(){
        //invokestatic
        showStatic(" 大头儿子");
        //invokestatic
        super.showStatic(" 大头儿子");
        //invokespecial
        showPrivate(" hello!");
        //invokespecial
        super.showCommon();
        //invokevirtual 由于此方法声明有final 不能被子类重写,因此也认为该方法是非虚方法
        showFinal();
        //虚方法以下
        //invokevirtual
        showCommon();//没有显式加super,被认为是虚方法,由于子类可能重写showCommon
        info();

        MethodInterface in = null;
        //invokeinterface  不肯定接口实现类是哪个 须要重写
        in.methodA();

    }

    public void info(){

    }

}

interface MethodInterface {
    void methodA();
}
复制代码
关于invokedynamic指令
  • JVM字节码指令集一直比较稳定,一直到java7才增长了一个invokedynamic指令,这是Java为了实现【动态类型语言】支持而作的一种改进
  • 可是java7中并无提供直接生成invokedynamic指令的方法,须要借助ASM这种底层字节码工具来产生invokedynamic指令.直到Java8的Lambda表达式的出现,invokedynamic指令的生成,在java中才有了直接生成方式
  • Java7中增长的动态语言类型支持的本质是对java虚拟机规范的修改,而不是对java语言规则的修改,这一块相对来说比较复杂,增长了虚拟机中的方法调用,最直接的受益者就是运行在java凭条的动态语言的编译器
动态类型语言和静态类型语言
  • 动态类型语言和静态类型语言二者的却别就在于对类型的检查是在编译期仍是在运行期,知足前者就是静态类型语言,反之则是动态类型语言。
  • 直白来讲 静态语言是判断变量自身的类型信息;动态类型预言师判断变量值的类型信息,变量没有类型信息,变量值才有类型信息,这是动态语言的一个重要特征
  • Java是静态类型语言(尽管lambda表达式为其增长了动态特性),js,python是动态类型语言.

2.5.3方法重写的本质

  • 1 找到操做数栈的第一个元素所执行的对象的实际类型,记做C。
  • 2.若是在类型C中找到与常量中的描述符合简单名称都相符的方法,则进行访问权限校验,若是经过则返回这个方法的直接引用,查找过程结束;若是不经过,则返回java.lang.IllegalAccessError异常。
  • 3.不然,按照继承关系从下往上依次对c的各个父类进行第二步的搜索和验证过程。
  • 4.若是始终没有找到合适的方法,则抛出java.lang.AbstractMethodError异常。 IllegalAccessError介绍 程序视图访问或修改一个属性或调用一个方法,这个属性或方法,你没有权限访问。通常的,这个会引发编译器异常。这个错误若是发生在运行时,就说明一个类发生了不兼容的改变。

2.5.4 虚方法表

  • 在面向对象编程中,会很频繁期使用到动态分派,若是在每次动态分派的过程当中都要从新在累的方法元数据中搜索合适的目标的话就可能影响到执行效率。所以,为了提升性能,jvm采用在类的方法区创建一个虚方法表(virtual method table)(非虚方法不会出如今表中)来实现。使用索引表来代替查找。
  • 每一个类中都有一个虚方法表,表中存放着各个方法的实际入口。
  • 那么虚方法表何时被建立? 虚方法表会在类加载的连接阶段被建立 并开始初始化,类的变量初始值准备完成以后,jvm会把该类的方发表也初始化完毕。

2.6 方法返回地址(Return Address)

  • 存放调用该方法的PC寄存器的值。
  • 一个方法的结束,有两种方式:
    • 正常执行完成
    • 出现未处理的异常,非正常退出
  • 不管经过哪一种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的pc计数器的值做为返回地址,即调用该方法的指令的下一条指令的地址。而经过异常退出时,返回地址是要经过异常表来肯定,栈帧中通常不会保存这部分信息。
  • 本质上,方法的退出就是当前栈帧出栈的过程。此时,须要恢复上层方法的局部变量表、操做数栈、将返回值也如调用者栈帧的操做数栈、设置PC寄存器值等,让调用者方法继续执行下去。
  • 正常完成出口和异常完成出口的区别在于:经过异常完成出口退出的不会给他的上层调用者产生任何的返回值。

当一个方法开始执行后,只要两种方式能够退出这个方法: 一、执行引擎遇到任意一个方法返回的字节码指令(return),会有返回值传递给上层的方法调用者,简称正常完成出口;

  • 一个方法在正常调用完成以后究竟须要使用哪个返回指令还须要根据方法返回值的实际数据类型而定
  • 在字节码指令中,返回指令包含ireturn(当返回值是boolena、byte、char、short和int类型时使用)、lreturn、freturn、dreturn以及areturn,另外还有一个return指令供声明为void的方法、实例初始化方法、类和接口的初始化方法使用

二、在方法执行的过程当中遇到了异常(Exception),而且这个异常没有在方法内进行处理,也就是只要在本方法的异常表中没有搜素到匹配的异常处理器,就会致使方法退出,简称异常完成出口
方法执行过程当中抛出异常时的异常处理,存储在一个异常处理表,方便在发生异常的时候找处处理异常的代码。

2.7 一些附加信息

栈帧中还容许携带与java虚拟机实现相关的一些附加信息。例如,对程序调试提供支持的信息。(不少资料都忽略了附加信息)

2.8 虚拟机栈的5道面试题

1.举例栈溢出的状况?(StackOverflowError)

  • 递归调用等,经过-Xss设置栈的大小;

2.调整栈的大小,就能保证不出现溢出么?

  • 不能 如递归无限次数确定会溢出,调整栈大小只能保证溢出的时间晚一些

3.分配的栈内存越大越好么?

  • 不是 会挤占其余线程的空间

4.垃圾回收是否会涉及到虚拟机栈?

  • 不会
内存区块 Error GC
程序计数器
本地方法栈
jvm虚拟机栈
方法区

5.方法中定义的局部变量是否线程安全?

  • 要具体状况具体分析
/**
 * 面试题:
 * 方法中定义的局部变量是否线程安全?具体状况具体分析
 *
 * 何为线程安全?
 *     若是只有一个线程能够操做此数据,则毙是线程安全的。
 *     若是有多个线程操做此数据,则此数据是共享数据。若是不考虑同步机制的话,会存在线程安全问题
 *
 * StringBuffer是线程安全的,StringBuilder不是
 */
public class StringBuilderTest {

    //s1的声明方式是线程安全的
    public static void method1(){
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
    }

    //stringBuilder的操做过程:是不安全的,由于method2能够被多个线程调用
    public static void method2(StringBuilder stringBuilder){
        stringBuilder.append("a");
        stringBuilder.append("b");
    }

    //s1的操做:是线程不安全的 有返回值,可能被其余线程共享
    public static StringBuilder method3(){
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
        return s1;
    }

    //s1的操做:是线程安全的 ,StringBuilder的toString方法是建立了一个新的String,s1在内部消亡了
    public static String method4(){
        StringBuilder s1 = new StringBuilder();
        s1.append("a");
        s1.append("b");
        return s1.toString();
    }

    public static void main(String[] args) {
        StringBuilder s = new StringBuilder();
        new Thread(()->{
            s.append("a");
            s.append("b");
        }).start();

        method2(s);

    }

}
复制代码

3 本地方法栈

  • Java虚拟机栈用于管理Java方法的调用,而本地方法栈用于管理本地方法的调用
  • 本地方法栈,也是线程私有的。
  • 容许被实现成固定或者是可动态拓展的内存大小。(在内存溢出方面是相同的)
    • 若是线程请求分配的栈容量超过本地方法栈容许的最大容量,Java虚拟机将会抛出一个StackOverFlowError异常。
    • 若是本地方法栈能够动态扩展,而且在尝试扩展的时候没法申请到足够的内存,或者在建立新的线程时没有足够的内存去建立对应的本地方法栈,那么java虚拟机将会抛出一个OutOfMemoryError异常。
  • 本地方法是使用C语言实现的
  • 它的具体作法是Native Method Stack中登记native方法,在Execution Engine执行时加载本地方法库。
  • 当某个线程调用一个本地方法时,它就进入了一个全新的而且再也不受虚拟机限制的世界。它和虚拟机拥有一样的权限
    • 本地方法能够经过本地方法接口来 访问虚拟机内部的运行时数据区
    • 它甚至能够直接使用本地处理器中的寄存器
    • 直接从本地内存的堆中分配任意数量的内存
  • 并非全部的JVM都支持本地方法。由于Java虚拟机规范并无明确要求本地方法栈的使用语言、具体实现方式、数据结构等。若是JVM产品不打算支持native方法,也能够无需实现本地方法栈。
  • 在hotSpot JVM中,直接将本地方法栈和虚拟机栈合二为一。


JVM学习代码及笔记(陆续更新中...)

【代码】
github.com/willShuhuan…
【笔记】
JVM_01 简介
JVM_02 类加载子系统
JVM_03 运行时数据区1- [程序计数器+虚拟机栈+本地方法栈]
JVM_04 本地方法接口
JVM_05 运行时数据区2-堆
JVM_06 运行时数据区3-方法区
JVM_07 运行时数据区4-对象的实例化内存布局与访问定位+直接内存
JVM_08 执行引擎(Execution Engine)
JVM_09 字符串常量池StringTable
JVM_10 垃圾回收1-概述+相关算法
JVM_11 垃圾回收2-垃圾回收相关概念
JVM_12 垃圾回收3-垃圾回收器

相关文章
相关标签/搜索