Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K.code
If there is no non-empty subarray with sum at least K, return -1.队列
Example 1:get
Input: A = [1], K = 1
Output: 1
Example 2:it
Input: A = [1,2], K = 4
Output: -1
Example 3:io
Input: A = [2,-1,2], K = 3
Output: 3ast
Note:class
1 <= A.length <= 50000
-10 ^ 5 <= A[i] <= 10 ^ 5
1 <= K <= 10 ^ 9test
class Solution { public int shortestSubarray(int[] nums, int k) { if (nums == null || nums.length == 0) return -1; int len = nums.length, min = len+1; int[] sum = new int[len+1]; for (int i = 0; i < len; i++) sum[i+1] = sum[i] + nums[i]; Deque<Integer> queue = new ArrayDeque<>(); // pollFirst() == poll() 较早放入deque的元素 在队列顶部 // getFirst() == peek() // pollLast() 最近放入deque的元素 在队列尾部 // getLast() for (int i = 0; i <= len; i++) { // 检查最近放入的index,保证队列中新放入的index及对应的sum[index]均为递增 // 反证:若保留worse candidate,那么在下面第二个while循环,该元素有可能 // 中断while循环,并使得咱们没法获得队列更左边的最优解 while (queue.size() > 0 && sum[i]-sum[queue.getLast()] <= 0) { queue.pollLast(); } // 检查较早放入的index update最小距离 while (queue.size() > 0 && sum[i]-sum[queue.peek()] >= k) { min = Math.min(min, i-queue.peek()); queue.pollFirst(); } queue.offer(i); } return min <= len ? min : -1; } }