JavaShuo
栏目
标签
《凸优化》笔记(二):凸函数
时间 2021-01-02
原文
原文链接
本文转载自:https://blog.csdn.net/u010366427/article/details/51879112 笔记是根据《Convex Optimization》写的,对应第3章。 3 凸函数 3.1 基本性质及例子 满足如下条件的从n维映射到1维的函数称凸函数: f(θx+(1−θ)y)≤θf(x)+(1−θ)f(y)f(θx+(1−θ)y)≤θf(x)+(1−θ)f(
>>阅读原文<<
相关文章
1.
06 ,凸函数 ,凸优化 :
2.
CMU Convex Optimization(凸优化)笔记1--凸集和凸函数
3.
凸集、凸函数、凸优化和凸二次规划
4.
凸优化-凸集和凸函数
5.
凸集、凸函数、凸优化
6.
【最优化笔记1】引论知识(凸集与凸函数)
7.
凸函数2(斯坦福凸优化笔记6)
8.
凸优化学习笔记 7:拟凸函数 Quasiconvex Function
9.
凸函数1(斯坦福凸优化笔记5)
10.
凸函数与凸优化的问题
更多相关文章...
•
SEO - 搜索引擎优化
-
网站建设指南
•
MySQL的优势(优点)
-
MySQL教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
算法总结-广度优先算法
相关标签/搜索
凸凸
凸起
凸包
凹凸
凸性
凸显
凸出
凸多边形
二次函数
MyBatis教程
Redis教程
NoSQL教程
代码格式化
数据传输
数据库
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0备份还原
2.
openstack
3.
深入探讨OSPF环路问题
4.
代码仓库-分支策略
5.
Admin-Framework(八)系统授权介绍
6.
Sketch教程|如何访问组件视图?
7.
问问自己,你真的会用防抖和节流么????
8.
[图]微软Office Access应用终于启用全新图标 Publisher已在路上
9.
微软准备淘汰 SHA-1
10.
微软准备淘汰 SHA-1
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
06 ,凸函数 ,凸优化 :
2.
CMU Convex Optimization(凸优化)笔记1--凸集和凸函数
3.
凸集、凸函数、凸优化和凸二次规划
4.
凸优化-凸集和凸函数
5.
凸集、凸函数、凸优化
6.
【最优化笔记1】引论知识(凸集与凸函数)
7.
凸函数2(斯坦福凸优化笔记6)
8.
凸优化学习笔记 7:拟凸函数 Quasiconvex Function
9.
凸函数1(斯坦福凸优化笔记5)
10.
凸函数与凸优化的问题
>>更多相关文章<<