GRU网络

GRU网络 简介 随着 LSTM 在自然语言处理特别是文本分类任务的广泛应 用,人们逐渐发现 LSTM 具有训练时间长、参数较多、内部计 算复杂的缺点。Cho 等人在 2014 年进一步提出了更加简单的、 将 LSTM 的单元状态和隐层状态进行合并的、还有一些其他的 变动的 GRU 模型。将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态。GRU把LSTM中的遗忘门和输入们用更
相关文章
相关标签/搜索