机器学习实战05:支持向量机

- 基于最大间隔分隔数据 关于支持向量机 优点:泛化错误率低,计算开销不大,结果易解释。 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。 适用数据类型:数值型和标称型数据。 如果数据点离决策边界越远,那么其最后的预测结果也就越可信。 我们希望找到离分隔超平面最近的点,确保它们离分隔面的距离尽可能远。这里点到分隔面的距离被称为间隔。我们希望间隔尽可能地大,这是因为如果我
相关文章
相关标签/搜索