可解释性机器学习

可解释性机器学习 地址: 原书-英文版 中文翻译版-更新中 机器学习对于改进产品、过程和研究有很大的潜力。但是计算机通常不能解释他们的预测,这是机器学习的一个障碍。这本书是关于使机器学习模型和它们的决策可解释。 在探索了可解释性的概念之后,您将学习简单的、可解释的模型,如决策树、决策规则和线性回归。后面几章重点介绍了解释黑箱模型的一般模型不可知论方法,如特征重要性和累积局部效应,以及用沙普利值(S
相关文章
相关标签/搜索