一、二分查找算法
二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,若是中间元素正好是要查找的元素,则搜索过程结束;若是某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,并且跟开始同样从中间元素开始比较。若是在某一步骤数组为空,则表明找不到。这种搜索算法每一次比较都使搜索范围缩小一半。shell
# 返回 x 在 arr 中的索引,若是不存在返回 -1 def binarySearch (arr, l, r, x): # 基本判断 if r >= l: mid = int(l + (r - l)/2) # 元素整好的中间位置 if arr[mid] == x: return mid # 元素小于中间位置的元素,只须要再比较左边的元素 elif arr[mid] > x: return binarySearch(arr, l, mid-1, x) # 元素大于中间位置的元素,只须要再比较右边的元素 else: return binarySearch(arr, mid+1, r, x) else: # 不存在 return -1 # 测试数组 arr = [ 2, 3, 4, 10, 40 ] x = 10 # 函数调用 result = binarySearch(arr, 0, len(arr)-1, x) if result != -1: print ("元素在数组中的索引为 %d" % result ) else: print ("元素不在数组中")
二、线性查找api
性查找指按必定的顺序检查数组中每个元素,直到找到所要寻找的特定值为止数组
def search(arr, n, x): for i in range (0, n): if (arr[i] == x): return i; return -1; # 在数组 arr 中查找字符 D arr = [ 'A', 'B', 'C', 'D', 'E' ]; x = 'D'; n = len(arr); result = search(arr, n, x) if(result == -1): print("元素不在数组中") else: print("元素在数组中的索引为", result);
三、插入排序数据结构
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工做原理是经过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。app
def insertionSort(arr): for i in range(1, len(arr)): key = arr[i] j = i-1 while j >=0 and key < arr[j] : arr[j+1] = arr[j] j -= 1 arr[j+1] = key arr = [12, 11, 13, 5, 6] insertionSort(arr) print ("排序后的数组:") for i in range(len(arr)): print ("%d" %arr[i])
四、快速排序ide
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,而后递归地排序两个子序列。函数
步骤为:性能
递归到最底部的判断条件是数列的大小是零或一,此时该数列显然已经有序。测试
选取基准值有数种具体方法,此选取方法对排序的时间性能有决定性影响。
def partition(arr,low,high): i = ( low-1 ) # 最小元素索引 pivot = arr[high] for j in range(low , high): # 当前元素小于或等于 pivot if arr[j] <= pivot: i = i+1 arr[i],arr[j] = arr[j],arr[i] arr[i+1],arr[high] = arr[high],arr[i+1] return ( i+1 ) # arr[] --> 排序数组 # low --> 起始索引 # high --> 结束索引 # 快速排序函数 def quickSort(arr,low,high): if low < high: pi = partition(arr,low,high) quickSort(arr, low, pi-1) quickSort(arr, pi+1, high) arr = [10, 7, 8, 9, 1, 5] n = len(arr) quickSort(arr,0,n-1) print ("排序后的数组:") for i in range(n): print ("%d" %arr[i]),
五、选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工做原理以下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,而后,再从剩余未排序元素中继续寻找最小(大)元素,而后放到已排序序列的末尾。以此类推,直到全部元素均排序完毕。
import sys A = [64, 25, 12, 22, 11] for i in range(len(A)): min_idx = i for j in range(i+1, len(A)): if A[min_idx] > A[j]: min_idx = j A[i], A[min_idx] = A[min_idx], A[i] print ("排序后的数组:") for i in range(len(A)): print("%d" %A[i]),
六、冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,若是他们的顺序错误就把他们交换过来。走访数列的工做是重复地进行直到没有再须要交换,也就是说该数列已经排序完成。这个算法的名字由来是由于越小的元素会经由交换慢慢"浮"到数列的顶端。
def bubbleSort(arr): n = len(arr) # 遍历全部数组元素 for i in range(n): # Last i elements are already in place for j in range(0, n-i-1): if arr[j] > arr[j+1] : arr[j], arr[j+1] = arr[j+1], arr[j] arr = [64, 34, 25, 12, 22, 11, 90] bubbleSort(arr) print ("排序后的数组:") for i in range(len(arr)): print ("%d" %arr[i]),
七、归并排序
归并排序(英语:Merge sort,或mergesort),是建立在归并操做上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个很是典型的应用。
分治法:
def merge(arr, l, m, r): n1 = m - l + 1 n2 = r- m # 建立临时数组 L = [0] * (n1) R = [0] * (n2) # 拷贝数据到临时数组 arrays L[] 和 R[] for i in range(0 , n1): L[i] = arr[l + i] for j in range(0 , n2): R[j] = arr[m + 1 + j] # 归并临时数组到 arr[l..r] i = 0 # 初始化第一个子数组的索引 j = 0 # 初始化第二个子数组的索引 k = l # 初始归并子数组的索引 while i < n1 and j < n2 : if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 # 拷贝 L[] 的保留元素 while i < n1: arr[k] = L[i] i += 1 k += 1 # 拷贝 R[] 的保留元素 while j < n2: arr[k] = R[j] j += 1 k += 1 def mergeSort(arr,l,r): if l < r: m = int((l+(r-1))/2) mergeSort(arr, l, m) mergeSort(arr, m+1, r) merge(arr, l, m, r) arr = [12, 11, 13, 5, 6, 7] n = len(arr) print ("给定的数组") for i in range(n): print ("%d" %arr[i]), mergeSort(arr,0,n-1) print ("\n\n排序后的数组") for i in range(n): print ("%d" %arr[i]),
八、堆排序
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似彻底二叉树的结构,并同时知足堆积的性质:即子结点的键值或索引老是小于(或者大于)它的父节点。堆排序能够说是一种利用堆的概念来排序的选择排序。
def heapify(arr, n, i): largest = i l = 2 * i + 1 # left = 2*i + 1 r = 2 * i + 2 # right = 2*i + 2 if l < n and arr[i] < arr[l]: largest = l if r < n and arr[largest] < arr[r]: largest = r if largest != i: arr[i],arr[largest] = arr[largest],arr[i] # 交换 heapify(arr, n, largest) def heapSort(arr): n = len(arr) # Build a maxheap. for i in range(n, -1, -1): heapify(arr, n, i) # 一个个交换元素 for i in range(n-1, 0, -1): arr[i], arr[0] = arr[0], arr[i] # 交换 heapify(arr, i, 0) arr = [ 12, 11, 13, 5, 6, 7] heapSort(arr) n = len(arr) print ("排序后") for i in range(n): print ("%d" %arr[i]),
九、计数排序
计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。做为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有肯定范围的整数
def countSort(arr): output = [0 for i in range(256)] count = [0 for i in range(256)] ans = ["" for _ in arr] for i in arr: count[ord(i)] += 1 for i in range(256): count[i] += count[i-1] for i in range(len(arr)): output[count[ord(arr[i])]-1] = arr[i] count[ord(arr[i])] -= 1 for i in range(len(arr)): ans[i] = output[i] return ans arr = "wwwrunoobcom" ans = countSort(arr) print ( "字符数组排序 %s" %("".join(ans)) )
十、希尔排序
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。
def shellSort(arr): n = len(arr) gap = int(n/2) while gap > 0: for i in range(gap,n): temp = arr[i] j = i while j >= gap and arr[j-gap] >temp: arr[j] = arr[j-gap] j -= gap arr[j] = temp gap = int(gap/2) arr = [ 12, 34, 54, 2, 3] n = len(arr) print ("排序前:") for i in range(n): print(arr[i]), shellSort(arr) print ("\n排序后:") for i in range(n): print(arr[i]),
十一、拓扑排序
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中全部顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出如今v以前。一般,这样的线性序列称为知足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序获得该集合上的一个全序,这个操做称之为拓扑排序。
在图论中,由一个有向无环图的顶点组成的序列,当且仅当知足下列条件时,称为该图的一个拓扑排序(英语:Topological sorting):
from collections import defaultdict class Graph: def __init__(self,vertices): self.graph = defaultdict(list) self.V = vertices def addEdge(self,u,v): self.graph[u].append(v) def topologicalSortUtil(self,v,visited,stack): visited[v] = True for i in self.graph[v]: if visited[i] == False: self.topologicalSortUtil(i,visited,stack) stack.insert(0,v) def topologicalSort(self): visited = [False]*self.V stack =[] for i in range(self.V): if visited[i] == False: self.topologicalSortUtil(i,visited,stack) print (stack) g= Graph(6) g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); print ("拓扑排序结果:") g.topologicalSort()