KMeans算法是一种无监督学习,它会将类似的对象归到同一类中。 其基本思想是: 1.随机计算k个类中心做为起始点。 2. 将数据点分配到理其最近的类中心。 3.移动类中心。 4.重复2,3直至类中心再也不改变或者达到限定迭代次数。 具体的实现以下:python
from numpy import * import matplotlib.pyplot as plt import pandas as pd # Load dataset url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pd.read_csv(url, names=names) dataset['class'][dataset['class']=='Iris-setosa']=0 dataset['class'][dataset['class']=='Iris-versicolor']=1 dataset['class'][dataset['class']=='Iris-virginica']=2 #对类别进行编码,3个类别分别赋值0,1,2 #算距离 def distEclud(vecA, vecB): #两个向量间欧式距离 return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) #初始化聚类中心:经过在区间范围随机产生的值做为新的中心点 def randCent(dataSet, k): #获取特征维度 n = shape(dataSet)[1] #建立聚类中心0矩阵 k x n centroids = mat(zeros((k,n))) #遍历n维特征 for j in range(n): #第j维特征属性值min ,1x1矩阵 minJ = min(dataSet[:,j]) #区间值max-min,float数值 rangeJ = float(max(dataSet[:,j]) - minJ) #第j维,每次随机生成k个中心 centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) return centroids def randChosenCent(dataSet,k): # 样本数 m=shape(dataSet)[0] # 初始化列表 centroidsIndex=[] #生成相似于样本索引的列表 dataIndex=list(range(m)) for i in range(k): #生成随机数 randIndex=random.randint(0,len(dataIndex)) #将随机产生的样本的索引放入centroidsIndex centroidsIndex.append(dataIndex[randIndex]) #删除已经被抽中的样本 del dataIndex[randIndex] #根据索引获取样本 centroids = dataSet.iloc[centroidsIndex] return mat(centroids) def kMeans(dataSet, k): # 样本总数 m = shape(dataSet)[0] # 分配样本到最近的簇:存[簇序号,距离的平方] # m行 2 列 clusterAssment = mat(zeros((m, 2))) # step1: # 经过随机产生的样本点初始化聚类中心 centroids = randChosenCent(dataSet, k) print('最初的中心=', centroids) # 标志位,若是迭代先后样本分类发生变化值为Tree,不然为False clusterChanged = True # 查看迭代次数 iterTime = 0 # 全部样本分配结果再也不改变,迭代终止 while clusterChanged: clusterChanged = False # step2:分配到最近的聚类中心对应的簇中 for i in range(m): # 初始定义距离为无穷大 minDist = inf; # 初始化索引值 minIndex = -1 # 计算每一个样本与k个中心点距离 for j in range(k): # 计算第i个样本到第j个中心点的距离 distJI = distEclud(centroids[j, :], dataSet.values[i, :]) # 判断距离是否为最小 if distJI < minDist: # 更新获取到最小距离 minDist = distJI # 获取对应的簇序号 minIndex = j # 样本上次分配结果跟本次不同,标志位clusterChanged置True if clusterAssment[i, 0] != minIndex: clusterChanged = True clusterAssment[i, :] = minIndex, minDist ** 2 # 分配样本到最近的簇 iterTime += 1 sse = sum(clusterAssment[:, 1]) print('the SSE of %d' % iterTime + 'th iteration is %f' % sse) # step3:更新聚类中心 for cent in range(k): # 样本分配结束后,从新计算聚类中心 # 获取该簇全部的样本点 ptsInClust = dataSet.iloc[nonzero(clusterAssment[:, 0].A == cent)[0]] # 更新聚类中心:axis=0沿列方向求均值。 centroids[cent, :] = mean(ptsInClust, axis=0) return centroids, clusterAssment def kMeansSSE(dataSet,k,distMeas=distEclud, createCent=randChosenCent): m = shape(dataSet)[0] #分配样本到最近的簇:存[簇序号,距离的平方] clusterAssment=mat(zeros((m,2))) #step1:#初始化聚类中心 centroids = createCent(dataSet, k) print('initial centroids=',centroids) sseOld=0 sseNew=inf iterTime=0 #查看迭代次数 while(abs(sseNew-sseOld)>0.0001): sseOld=sseNew #step2:将样本分配到最近的质心对应的簇中 for i in range(m): minDist=inf;minIndex=-1 for j in range(k): #计算第i个样本与第j个质心之间的距离 distJI=distMeas(centroids[j,:],dataSet.values[i,:]) #获取到第i样本最近的质心的距离,及对应簇序号 if distJI<minDist: minDist=distJI;minIndex=j clusterAssment[i,:]=minIndex,minDist**2 #分配样本到最近的簇 iterTime+=1 sseNew=sum(clusterAssment[:,1]) print('the SSE of %d'%iterTime + 'th iteration is %f'%sseNew) #step3:更新聚类中心 for cent in range(k): #样本分配结束后,从新计算聚类中心 ptsInClust=dataSet[nonzero(clusterAssment[:,0].A==cent)[0]] #按列取平均,mean()对array类型 centroids[cent,:] = mean(ptsInClust, axis=0) return centroids, clusterAssment # 2维数据聚类效果显示 def datashow(dataSet, k, centroids, clusterAssment): # 二维空间显示聚类结果 from matplotlib import pyplot as plt num, dim = shape(dataSet) # 样本数num ,维数dim if dim != 2: print('sorry,the dimension of your dataset is not 2!') return 1 marksamples = ['or', 'ob', 'og', 'ok', '^r', '^b', '<g'] # 样本图形标记 if k > len(marksamples): print('sorry,your k is too large,please add length of the marksample!') return 1 # 绘全部样本 for i in range(num): markindex = int(clusterAssment[i, 0]) # 矩阵形式转为int值, 簇序号 # 特征维对应坐标轴x,y;样本图形标记及大小 plt.plot(dataSet.iat[i, 0], dataSet.iat[i, 1], marksamples[markindex], markersize=6) # 绘中心点 markcentroids = ['o', '*', '^'] # 聚类中心图形标记 label = ['0', '1', '2'] c = ['yellow', 'pink', 'red'] for i in range(k): plt.plot(centroids[i, 0], centroids[i, 1], markcentroids[i], markersize=15, label=label[i], c=c[i]) plt.legend(loc='upper left') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.title('k-means cluster result') # 标题 plt.show() # 画出实际图像 def trgartshow(dataSet, k, labels): from matplotlib import pyplot as plt num, dim = shape(dataSet) label = ['0', '1', '2'] marksamples = ['ob', 'or', 'og', 'ok', '^r', '^b', '<g'] # 经过循环的方式,完成分组散点图的绘制 for i in range(num): plt.plot(datamat.iat[i, 0], datamat.iat[i, 1], marksamples[int(labels.iat[i, 0])], markersize=6) for i in range(0, num, 50): plt.plot(datamat.iat[i, 0], datamat.iat[i, 1], marksamples[int(labels.iat[i, 0])], markersize=6, label=label[int(labels.iat[i, 0])]) plt.legend(loc='upper left') # 添加轴标签和标题 plt.xlabel('sepal length') plt.ylabel('sepal width') plt.title('iris true result') # 标题 # 显示图形 plt.show() # label=labels.iat[i,0] #聚类前,绘制原始的样本点 def originalDatashow(dataSet): #样本的个数和特征维数 num,dim=shape(dataSet) marksamples=['ob'] #样本图形标记 for i in range(num): plt.plot(datamat.iat[i,0],datamat.iat[i,1],marksamples[0],markersize=5) plt.title('original dataset') plt.xlabel('sepal length') plt.ylabel('sepal width') #标题 plt.show() if __name__ == '__main__': # =====kmeans聚类 # # #获取样本数据 datamat = dataset.loc[:, ['sepal-length', 'sepal-width']] # 真实的标签 labels = dataset.loc[:, ['class']] # #原始数据显示 originalDatashow(datamat) # #*****kmeans聚类 k = 3 # 用户定义聚类数 mycentroids, clusterAssment = kMeans(datamat, k) # mycentroids,clusterAssment=kMeansSSE(datamat,k) # 绘图显示 datashow(datamat, k, mycentroids, clusterAssment) trgartshow(datamat, 3, labels)
下面,使用TensorFlow,实现以下:算法
import tensorflow as tf import numpy as np from tensorflow.contrib.factorization import KMeans import os os.environ['CUDA_VISIBLE_DEVICES']='' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data',one_hot=True) full_data_x = mnist.train.images num_steps = 50 batch_size = 1024 k = 25 num_classes = 10 num_features = 28*28 X = tf.placeholder(tf.float32,[None,num_features]) y = tf.placeholder(tf.float32,[None,num_classes]) kmeans = KMeans(inputs=X,num_clusters=k,distance_metric='cosine',use_mini_batch=True) # Build KMeans graph all_scores, cluster_idx, scores, cluster_centers_initialized,init_op, training_op = kmeans.training_graph() cluster_idx = cluster_idx[0] avg_distance = tf.reduce_mean(scores) # Initialize the variables (i.e. assign their default value) init_vars = tf.global_variables_initializer() sess = tf.Session() sess.run(init_vars, feed_dict={X: full_data_x}) sess.run(init_op, feed_dict={X: full_data_x}) # Training for i in range(1, num_steps + 1): _, d, idx = sess.run([training_op, avg_distance, cluster_idx], feed_dict={X: full_data_x}) if i % 10 == 0 or i == 1: print("Step %i, Avg Distance: %f" % (i, d)) counts = np.zeros(shape=(k, num_classes)) for i in range(len(idx)): counts[idx[i]] += mnist.train.labels[i] # Assign the most frequent label to the centroid labels_map = [np.argmax(c) for c in counts] labels_map = tf.convert_to_tensor(labels_map) # Evaluation ops # Lookup: centroid_id -> label cluster_label = tf.nn.embedding_lookup(labels_map, cluster_idx) # Compute accuracy correct_prediction = tf.equal(cluster_label, tf.cast(tf.argmax(y, 1), tf.int32)) accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Test Model test_x, test_y = mnist.test.images, mnist.test.labels print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: test_x, y: test_y}))