SVM算法的另一种理解

解决一个机器学习问题的通常套路是先构建一个目标函数,而后解决一个优化问题。目标函数一般由损失函数和正则项组成。常见的损失函数log-loss,square-loss,cross-entropy-loss等,常见的正则化方法有L1正则、L2正则等,常见的优化方法有梯度降低、随机梯度降低等。SVM也能够按照这种模式来从新定义。机器学习

首先,损失函数函数

\( l(y_i,y_i') = max(0,1-y_iy_i') \),称之为hinge-loss. 实际值y的取值为-1和1,容易看出,只要实际值和预测值不一样,损失函数就会大于0,当实际值和预测值相同的时候,预测值的绝对值越大越好学习

而后,构建目标函数优化

obj(w,b) = \(\sum_{i=1}^{N}max(0,1-y_i(w \dot x_i+b)) + c||w||^2\)学习方法

能够证实方法

上述目标函数和上篇文章中获得的优化目标统计

\(min_{w,b}\frac{1}{2}||w||^2+C\sum_{i=1}^{N}\xi_i\)oss

s.t \(y_i(w\cdot x_i+b)>=1-\xi_i, i=1,2,...N\)文章

\(\xi_i>=0,i=1,2,3...N\)

等价

参考:李航《统计学习方法》

相关文章
相关标签/搜索