卷积层、池化层和全连接层

卷积层(Convolution) 什么是卷积,如下图所示,卷积操作是用卷积核,按照一定的步长,在一张图片上规律性的移动。卷积核的每个单元有权重,在卷积核移动的过程中将图片上的像素和卷积核的对应权重相乘,最后将所有乘积相加得到一个输出。 作用和意义: ①局部感知: 在传统神经网络中每个神经元都要与图片上每个像素相连接,这样的话就会造成权重的数量巨大造成网络难以训练。而在含有卷积层的的神经网络中每个神
相关文章
相关标签/搜索