druid.io剖析

druid.io剖析

简介

druid做为如今最有潜力的海量数据实时分析系统,在优酷广告团队中扮演者很是重要的角色node

总体架构

总体架构

如今已经用tranquility+indexing service替换realtimemysql

实时数据经由tranquility被推送到Indexing Service,而后生成索引(Segment),同时提供来自用户的 查询请求。当索引所在的时间段过去之后,Indexing Service会将索引推送到deep storage。 索引信息会被注册到metadata中。协调节点定时同步metadata,感知新生成的Segment, 并经过Zookeeper去通知历史节点加载索引。git

除了实时加载数据,Druid也支持批量导入数据。导入的数据生成索引segment,写入deep storage, 经与上述一样的步骤,经过修改metadata信息将segment加载到历史节点。github

Lambda架构思想

Lamda架构用来同时处理离线和实时数据算法

lambda架构

druid借助lambda思想,很好的解决了实时处理逻辑会丢弃时间窗口之外的数据的问题。sql

  • 实时:经过tranquility拉取数据并导入druid
  • 离线:经过druid提供的Hadoop Indexer(其实是mr任务)获取hdfs数据,生成segment并导入hdfs,并将索引元信息导入mysql。druid定时轮询mysql并获取最新索引数据,最后经过指定负载均衡算法分配给工做节点

依赖

kafka(16c32g480gx8)

TT日志-->storm etl-->kafkajson

kafka做为storm和druid之间的缓冲缓存

tranquility(4c8g120gx9)

/home/admin/druid-tranquility/default架构

config目录存储了不少json文件,定义了数据源的schema,也就是druid表结构,全部schema中配置的segmentGranularity都是hour级别, queryGranularity有hour也有minute级别并发

重要参数

segmentGranularity不等于queryGranularity

  • segmentGranularity:索引粒度,也就是一个segment文件包含的数据时间范围
  • queryGranularity:查询粒度,也就是最小聚合粒度,表明数据存储的时候,在维度相同的状况下,同一查询粒度范围内的数据会自动被聚合,致使查询的时候只能查到该粒度级别的数据
  • intermediatePersistPeriod:定时持久化增量索引的周期,目前大可能是5min
  • windowPeriod:时间窗口,表示若是数据时间比当前时间老或者比当前时间新,超过该窗口范围以外的所有被丢弃,目前大可能是10min,也有5min

推荐配置:intermediatePersistPeriod ≤ windowPeriod < segmentGranularity,queryGranularity<= segmentGranularity

tranquility工做流程:

tranquility

简而言之,tranquility会作两件事:

  • 创建索引任务并发给overlord:tranquility发送的task会被overlord接受,最后会占用middle-manager的一个空闲slot。为防止太多task,tranquility会为同一个segmentGranularity范围以内的task分配同一个id,这个全部发送过去的task都会被合并。还有两个配置项影响task数量,tranquility能够在schema中为每一个数据源配置partitions和replicants,一个小时之内请求的task数量= partitions * replicants。目前middle-manager的全部slot数量均可以在overlord UI查看,能够根据剩余slot数量来修改配置中的partitions和replicants参数。创建的task主要目的是明确每一个tranquility该往哪一个peon发送实时数据,即实时数据在众多peon中负载均衡的策略(稍后讨论handoff阶段
  • 将实时数据发送给peon进程:peon会经过EventReceiverFirehose服务暴露一个http接口,tranquility经过zookeeper获取task的分配信息,明确实时数据该往哪一个peon发,并将peon暴露的接口发起post请求,提交实时数据

内部组件

indexing service

indexing service分为三个组件(工做进程),用相似storm的nimbus->supervisor->worker的方式工做

  • overlord(4c8g120gx2):接收tranquility请求的实时索引task,选择slot空闲最多的middle-manager,经过zk将task分配给middle-manager,填满为止。目前overlord两台机器,master-slave结构
  • middle-manager(4c8g120gx51):经过zk获取task,启动本地进程peon执行task
  • peon:获取实时数据,执行task,完成索引创建。peon自己还负责索引查询服务

index service接收tranquility请求并处理的整个流程:

indexing service

peon完成了索引build,merge,handoff的整个生命周期

peon-flow

每一个middle-manger有N个slot,对应N个peon,每次分配一个索引task就会建立一个peon进程,这个小时之内peon会占据这个slot,等完成handoff以后才释放

这个小时之内,peon会不断生成增量索引,定时持久化索引,合并索引生成segment,最后handoff segment

handoff流程:

handoff

historical(16c32g480gx10)

historical提供索引加载和查询服务

historical

历史节点在从下载segment前,会从本地缓存检查是否存在,若是不存在才从hdfs下载。下载完成以后,会根据zk获取到的压缩信息进行解压处理并加载到内存,这时就能提供查询服务。

能够经过配置给历史节点划分不一样的层,而后在coordinator配置规则来加载指定数据源到某个层。这样能够实现冷热数据划分处理,热数据查询多存量小,采用更好的cpu和内存机型配置,冷数据查询少存量大,采用更大的硬盘机型配置

broker(16c32g480gx2)

broker负责查询索引,目前是master-master结构

broker是查询节点,负责接受查询请求,解析查询对象中的时间范围,根据时间范围将实时索引请求(当前小时)路由到peon节点,将历史索引请求(1小时以前)路由到historical节点。接收peon和historical查询返回的数据,在作一次合并,最后返回结果

为了提升查询效率,broker会将查询结果缓存(LRU),目前提供了两种方式:

  • heap memory(目前使用)
  • kv存储,如memcached

只会缓存历史节点返回的数据,由于peon返回的实时数据常常改变,没有缓存的价值

coordinator(4c8g120gx2)

coordinator会协调历史节点中segment的分配

  • rules:每分钟从mysql拉取druid_rules和druid_segments,rules用来告知historical将如何load和drop索引文件,coordinator会读取这些rules,而后修改zk,通知historical加载删除指定的segment,这些均可以在coordinator的UI配置
  • load balance:根据zk中每一个historical node负责的segment量,作负载均衡
  • replication:在coordinator的UI中配置rules时,能够同时配置加载segment的备份数量,这些备份数量会以load balance的形式,分配到多个historical上面。这个备份数量与hdfs的segment备份数量不同,hdfs那个保证深度存储的数据不会丢失,historical上面备份是为了保证当某个historical挂掉的时候,其余存储了备份segment的节点能接着提供查询服务

外部依赖

zookeeper

druid依赖zk实现集群之间的交互

druid采用shard-nothing架构,每一个节点之间不直接和其余打交道,而是采用zk来沟通。这样保证了druid自己的HA特性

peon和historical发布索引

  • /druid/announcements:声明全部peon和historical的host
  • /druid/segments:记录全部peon和historical的host,以及他们负责的索引

提供indexing service相关数据(overlord页面数据来源)

  • /druid/indexer
  • leaderLatchPath:overlord选主
  • tasks:运行的peon任务
  • status:peon任务状态
  • announcements:声明middle-manager的capacity

coordinator用来通知historical加载卸载索引

  • /druid/loadQueue/_historical_host/_segement_id:记录历史节点所负责的segment

coordinator选主

  • coordinator:记录coordinator信息

集群通讯

  • discovery:集群中全部服务

附属功能

  • /druid/listeners:存储lookup数据

deep storage —— hdfs

存储索引文件

metadata storage —— mysql

存储元数据

  • druid_segments:索引元数据,数据源、是否可用、大小、维度、指标
  • druid_rules:通知historical该如何加载、卸载索引的规则,能够在coordinator配置
  • druid_config:存放运行时配置信息
  • druid_audit:记录配置、规则的变化
  • druid_task(相关的几张表):overlord用来存放索引task数据,防止overlord挂掉致使task丢失

索引文件

segment就是压缩后的索引文件,命名方式为datasource_intervalStart_intervalEnd_version_partitionNum。如dsp_report_2011-01-01T01:00:00Z_2011-01-01T02:00:00Z_v1_0,表明dsp_report数据源,从2011-01-01那天1点到2点的数据,版本号为v1,分区数为0

深刻剖析segment存储结构

  • version.bin:4字节,记录segment version
  • XXXXX.smoosh:该文件存放多个逻辑意义上的子文件,经过记录offset来管理这些子文件。有的子文件存放了column信息,有的存放了索引元信息。column信息也就是真实存储的数据
  • meta.smoosh:上面这些子文件名称以及他们出现的offset都记录在meta.smoosh中

XXXXX.smoosh中存放的column是最重要的,能够分为Timestamp, Dimensions, Metrics三部分。

timestamp domain advertiser device city click cost
2015-11-25T10:00:00Z youku.com BMW Android Peking 9 0.9
2015-11-25T10:00:00Z youku.com BMW Iphone HongKong 3 0.3
2015-11-25T10:00:00Z tudou.com PANDORA Iphone HongKong 2 0.2
2015-11-25T10:00:00Z tudou.com PANDORA Iphone Peking 1 0.1
  • Timestamp:用时间戳来表示时间,能够用一系列时间戳表示该segment全部Timestamp列信息,采用LZ4算法压缩
  • Metrics:也是数字,存放方法同上,压缩算法同上
  • Dimensions:因为Dimensions大可能是字符串,采用上面的存放方式没法很好压缩。目前Dimensions拆分红多个结构进行存储。

Dimensions结构:

  1. 将字符串映射为整数id的字典
  2. 记录该dimension每一行的值,值用上述字典编码
  3. 为每一个不一样dimension的值,定义一个bitmap,存储该值出现的行号,采用roaring压缩算法

上述结构中,1能够有效减小索引文件的大小,2的基础上作排序能够很方便的作groupby合并处理,3是快速完成where条件查询的利器。

内存管理

druid使用了三种不一样类型的内存:

  • 堆内存:broker用来缓存查询结果、简单计算
  • 直接内存:通常用来存储聚合操做中所产生的临时数据
  • MMap:历史节点用来加载segment,快速,减小一次系统复制操做。memory_for_segments = total_memory - heap - direct_memory - jvm_overhead,segment可用的内存越小,mmap操做就会致使更多的内存换页操做

参考资料

相关文章
相关标签/搜索