Logistic回归进化之FTRL

SGD算法 GD算法 SGD算法 与SGD比较,GD需要每次扫描所有的样本以计算一个全局梯度,SGD则每次只针对一个观测到的样本进行更新。通常情况下SGD可以更快的逼近最优值,而且SGD每次更新只需要一个样本,使得它很适合进行增量或者在线计算(也就是所谓的Online learning)。 稀疏解 代和选取模型的时候我们经常希望得到更加稀疏的模型,这不仅仅起到了特征选择的作用,也降低了预测计算的复
相关文章
相关标签/搜索