(1)词集模型(Set Of Words): 单词构成的集合,集合天然每一个元素都只有一个,也即词集中的每一个单词都只有一个。app
(2)词袋模型(Bag Of Words): 若是一个单词在文档中出现不止一次,并统计其出现的次数(频数)。less
考虑以下的文档:post
dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
list of lists 的每一行表示一个文档ui
vocabSet = set() for doc in dataset: vocabSet |= set(doc) vocabList = list(vocabSet)
# 词集模型 SOW = [] for doc in dataset: vec = [0]*len(vocabList) for i, word in enumerate(vocabList): if word in doc: vec[i] = 1 SOW.append(doc) # 词袋模型 BOW = [] for doc in dataset: vec = [0]*len(vocabList) for word in doc: vec[vocabList.index[word]] += 1 BOW.append(vec)