CVPR 2020 Oral | 旷视提出Circle Loss,革新深度特征学习范式

点击上方“视学算法”,选择加"星标"或“置顶” 重磅干货,第一时间送达 本文系旷视研究院投稿 本文是旷视CVPR2020论文系列解读第4篇,它提出用于深度特征学习的Circle Loss,从相似性对优化角度正式统一了两种基本学习范式(分类学习和样本对学习)下的损失函数。通过进一步泛化,Circle Loss 获得了更灵活的优化途径及更明确的收敛目标,从而提高所学特征的鉴别能力;它使用同一个公式,在
相关文章
相关标签/搜索