机器学习--如何理解svm的损失函数

如何理解svm的损失函数 损失函数: 是用来衡量一个预测器在对输入数据进行分类预测时的质量好坏。损失值越小,分类器的效果越好,越能反映输入数据与输出类别标签的关系(虽然我们的模型有时候会过拟合——这是由于训练数据被过度拟合,导致我们的模型失去了泛化能力)。 相反,损失值越大,我们需要花更多的精力来提升模型的准确率。就参数化学习而言,这涉及到调整参数,比如需要调节权重矩阵W或偏置向量B,以提高分类的
相关文章
相关标签/搜索