背景:算法
一个会员服务的企业,有近1年约1200个会员客户的收银数据。因为公司想针对不一样类别不活跃客户进行激活促销;同时,为回馈重点客户,也计划推出一系列针对重点客户的优惠活动,但愿保留这些客户,维持其活跃度。所以但愿利用该数据进行客户分类研究。数据库
分析:函数
根据客户的需求,RFM模型相对简单而且直接,按照R(Recency-近度)、F(Frequency-频度)和M(Monetary-额度)三个维度进行细分客户群体。因为该客户的数量较少(约1200个),因此,采用3x3x3=27个魔方(1200/27=44左右)较为合适,虽然平均每类客户数量较少,考虑到集中度分布状况,数量多的分类也可以有200-300左右,适合针对会员客户进行短时间的电话、短信营销或者信函营销的数量。工具
RFM模型原理:spa
RFM模型是一个简单的根据客户的活跃程度和交易金额贡献所作的分类。由于操做简单,因此,较为经常使用。3d
近度R:R表明客户最近的活跃时间距离数据采集点的时间距离,R越大,表示客户越久未发生交易,R越小,表示客户越近有交易发生。R越大则客户越可能会“沉睡”,流失的可能性越大。在这部分客户中,可能有些优质客户,值得公司经过必定的营销手段进行激活。视频
频度F:F表明客户过去某段时间内的活跃频率。F越大,则表示客户同本公司的交易越频繁,不只仅给公司带来人气,也带来稳定的现金流,是很是忠诚的客户;F越小,则表示客户不够活跃,且多是竞争对手的常客。针对F较小、且消费额较大的客户,须要推出必定的竞争策略,将这批客户从竞争对手中争取过来。blog
额度M:表示客户每次消费金额的多少,能够用最近一次消费金额,也能够用过去的平均消费金额,根据分析的目的不一样,能够有不一样的标识方法。通常来说,单次交易金额较大的客户,支付能力强,价格敏感度低,是较为优质的客户,而每次交易金额很小的客户,可能在支付能力和支付意愿上较低。固然,也不是绝对的。教程
RFM的分析工具备不少,可使用SPSS或者SAS进行建模分析,而后深度挖掘。IBM SPSS还有个Modeler,有专门的RFM挖掘算法供使用。本文为了普及,介绍使用Excel(2007版)作初步的RFM分析。数据分析
操做步骤:
第一步:数据的清洗
原始数据集:数据请参考附件Excel(模拟数据.xlsx)。你们能够下载练习。该数据集共有26600多条数据,包含记录ID(数据库的primarykey)、客户编号、收银时间、销售金额、销售类型共5个字段
经过简单的筛选,能够看到,在交易金额中有0消费额,有负数消费额,继续查看交易类型,发现为“赠送”和“退货”所形成。这些数据在本次分析中用不到,因此在数据处理时须要经过筛选除去。
Excel操做:
鼠标点击第一行的行标“1”以选中第一行
菜单栏点击“数据”,快捷按钮栏点选“筛选”
鼠标点击“销售类型”筛选下拉按钮,能够看到全部数据集中有的销售类型
点选“销售金额”字段的小角标也能够看到有负数出现。
第二步:数据处理
根据分析须要,R用客户最后成交时间跟数据采集点时间的时间差(天数)做为计量标准;F根据数据集中每一个会员客户的交易次数做为计量标准(1年的交易次数);M以客户平均的交易额为计量标准。经过Excel的透视表便可计算以上RFM数据。
Excel操做:
菜单栏点击“插入”
快捷按钮栏点击“透视表”
选择数据区域,确认全部的数据都被选择
选择在“新工做表”中插入数据,而后点击“肯定”
将“客户编号”拖入“行标签”栏
将“收银时间”、“记录ID”、“交易金额”拖入数值计算栏
点击“收银时间”数值计算栏按钮,选择“值字段设置”
在“计算类型”中选择“最大值”
在对话框左下角,点击“数字格式”,设定时间格式为:yyyy-mm-dd,而后“肯定”
点击“销售金额”数值计算栏按钮,选择“值字段设置”
在“计算类型”中选择“平均值”,而后“肯定”
在“记录ID”数值计算按钮栏,选择“值字段设置”
在“计算类型”中选择“计数”,而后“肯定”
在透视表顶部筛选项“销售类型”处,点击下拉按钮小角标,在“选择多项”前的小方框中打勾,而后点掉“退货”和“赠送”前的勾,而后“肯定”会获得以下结果。
以上咱们获得了:
1)F值:客户这1年共消费了多少次
2)M值:客户每次交易的平均消费金额
可是,R值还须要作些处理。目前R值只获得的是客户最近一次消费日期,须要计算距离数据采集日期的天数。
Excel操做:
鼠标拉选列标签ABCD,选中透视表所在的四列
按ctrl^C(复制),点击“开始”菜单栏下,快捷按钮栏“粘帖”下的小下拉三角标,选择“粘帖值”【或者点“选择性粘帖”,而后选择粘帖值】,用单纯的数据形式覆盖原有透视表。
在C1单元格中输入数据采集日期2010-09-27,格式为yyyy-mm-dd
而后选中C1单元格,复制其中内容
选中B5:B1204【快捷操做:点中B5,同时按住Shift^Ctrl后点击向下箭头,松开ctrl键,继续按住shift键,按一次向上箭头,取消数据最后一行的汇总数据】
点击“开始”菜单栏下快捷按钮栏上的“粘帖”按钮下方的下拉箭头,选择“选择性粘帖”,在对话框中勾选“减”,而后“肯定”
在不取消目前选择的状况下,选择“开始”菜单栏下快捷按钮栏上的格式化下拉菜单,选择“数字”
由于获得的数据为最后交易日期减去数据采集日期的天数,是负值,因此,还须要处理。
在D1单元格中输入-1
而后ctrl^C复制D1单元格中的值(-1)
而后选中B5:B1204【快捷操做同上】
“开始”-“粘帖”下拉按钮-“选择性粘帖”-在计算部分选择“乘”,而后点击“肯定”
最后获得:
到此,咱们获得R,F,M针对每一个客户编号的值
第三步:数据分析
R-score, F-score, M-score的值,为了对客户根据R,F,M进行三等分,咱们须要计算数据的极差(最大值和最小值的差),经过对比R(或者F,M)值和极差三等分距,来肯定R(或者F,M)的R-score, F-score, M-score。
因此先计算R、F、M的最大值、最小值、极差三等分距
Excel操做:
F1到H1表明R\F\M的最大值,利用公式“=max(B5:B1204)”计算,(计算F时B换成C,M时B换成D便可)
F2到H2表明R\F\M的最小值,利用公式“=min(B5:B1204)”计算(计算F时B换成C,M时B换成D便可)
F3到H3表明R\F\M的极差三等分距,利用公式“=(F1-F2)/3”计算(计算F时F换成G,M时F换成H便可)
【以上快捷操做可用,先输入F1,F2,F3单元格里的公式,选择F1:F3三个单元格,而后拉动右下角的黑色小十字叉,向右拖动复制F列公式到G和H列便可】
R-score的计算公式为:
E5单元格内输入:“=IF(ROUNDUP((B5-$F$2)/$F$3,0)=0,1,ROUNDUP((B5-$F$2)/$F$3,0)) ”
之因此使用IF判断函数,主要是考虑到当R值为最小值时,roundup(B5,0)为0,用if函数判断若是为0,则强制为1。
之因此用$F$2锁定引用的单元格,是为了后续的公式复制,最小值和极差三等分距不会发生相对引用而变化位置【锁定引用单元格除了手工添加$符号外,快捷方式是选中引用的单元格按F4快捷键,此处都比较麻烦,手工输入$符号还快些】
【另一种简单的处理方式就是直接用公式“=ROUNDUP((B5-$F$2)/$F$3,0)”,而后用ctrl^H快捷操做,将0值替换成1便可,这个替换须要将公式复制-快捷粘帖为数值后进行】
F-score和M-score如法炮制。
F5单元格公式为:=IF(ROUNDUP((C5-$G$2)/$G$3,0)=0,1,ROUNDUP((C5-$G$2)/$G$3,0))
G5单元格公式为:=IF(ROUNDUP((D5-$H$2)/$H$3,0)=0,1,ROUNDUP((D5-$H$2)/$H$3,0))
RFM-score的计算,利用分别乘以100-10-1而后相加的方式,让R、F、M分别为一个三位数字的三个百分位、十分位和个位表达,该三位数的三个位表明了3x3x3=27魔方三个维度上的坐标。
H5单元格的公式为: =E5*100+F5*10+G5
选中E4到H4区域,双击右下角小黑色十字叉,复制E4到H4公式到全部客户数据中
获得结果以下:
接下来的步骤就是统计各个魔方上的客户数量
再次利用透视表造成统计结果
Excel操做:
“插入”菜单栏下快捷按钮栏按“透视表”,在数据表区域中选择A4:H1204【确认这个选择,自动跳出来的区域要改一下的哦】,而后点击“肯定”
将RFM-Score拖入“行标签”中,将“客户编号”拖入“数值计算”栏中,点击“数值计算”栏中的“客户编号”项,选择“字段数值设置”,选择计算方法为“计数”,获得处理结果以下:
第四步:数据分析结果解读和可视化
获得这个分析结果,利用Excel的条件格式功能能够对获得的数据分析结果作简单的视觉化。
Excel操做:
将透视表中B列拉宽(如上图)
选中B5:B22列
“开始”菜单栏下快捷按钮栏点击“条件格式”下拉菜单中选择“数据条”,而后选择一个颜色便可
经过条形图的视觉化,能够直观地对比哪类客户数量较多。
随后会附上该操做步骤的视频教程,敬请期待;