JavaShuo
栏目
标签
Pedestrian Attribute Recognition via Hierarchical Multi-task Learning and Relationship Attention
时间 2020-12-30
原文
原文链接
动机: 在属性定位中增加像素级的监督,从而改进特征学习;局部属性和全局属性存在空间差异; 不同属性之间存在语义关系。 贡献: (1)提出了一种端到端的深度多任务学习方法,将语义分割与特征学习中的细粒度像素级属性定位相结合。 (2)提出了一种两阶段学习策略,通过在单个模型中逐级分离粗属性定位和细属性识别来增强特征学习。 (3)提出了一个属性关系注意模块来捕捉不同属性之间的关系,进一步增强了该特征以更
>>阅读原文<<
相关文章
1.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
2.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
3.
Attention-Based Pedestrian Attribute Analysis
4.
[笔记] Pedestrian Attribute Recognition Dataset Summary
5.
行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”
6.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
7.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
8.
Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Loc
9.
An Attention-Based Deep Learning Model for Multiple Pedestrian Attributes Recognition
10.
行人属性识别:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
更多相关文章...
•
C# 特性(Attribute)
-
C#教程
•
W3C RDF and OWL 活动
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入门实战(一)-Instrumentation介绍与使用
相关标签/搜索
recognition
hierarchical
multitask
pedestrian
attribute
relationship
attention
learning
action.....and
between...and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
字节跳动21届秋招运营两轮面试经验分享
2.
Java 3 年,25K 多吗?
3.
mysql安装部署
4.
web前端开发中父链和子链方式实现通信
5.
3.1.6 spark体系之分布式计算-scala编程-scala中trait特性
6.
dataframe2
7.
ThinkFree在线
8.
在线画图
9.
devtools热部署
10.
编译和链接
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
2.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
3.
Attention-Based Pedestrian Attribute Analysis
4.
[笔记] Pedestrian Attribute Recognition Dataset Summary
5.
行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”
6.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
7.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
8.
Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Loc
9.
An Attention-Based Deep Learning Model for Multiple Pedestrian Attributes Recognition
10.
行人属性识别:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
>>更多相关文章<<