JavaShuo
栏目
标签
行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”
时间 2021-01-11
原文
原文链接
行人属性预测中被多篇论文引用的论文。内容相对简单,两个网络结构,DeepSAR对每个属性独立预测,DeepMAR多属性联合预测。 目前属性预测关注的两个场景:自然场景和监控场景。自然场景图像质量一般比较高,而监控场景图像一般比较模糊、分辨率低、光线变化比较大。属性间一般是相互关联的,如头发的长度可以帮助性别的识别。 网络结构: 属性通常不具有同一分布,为解决样本不均问题,提出改进的损失函数: 其中
>>阅读原文<<
相关文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人属性“Generative Adversarial Models for People Attribute Recognition in Surveillance”
3.
Attribute-Recognition行人属性识别资料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人属性识别:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
7.
行人属性识别:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人属性“Attribute Recognition by Joint Recurrent Learning of Context and Correlation”
更多相关文章...
•
Swift for-in 循环
-
Swift 教程
•
C# 特性(Attribute)
-
C#教程
•
JDK13 GA发布:5大特性解读
•
再有人问你分布式事务,把这篇扔给他
相关标签/搜索
for...in
for..in
for.....in
recognition
pedestrian
attribute
scenarios
learning
属性
PHP 7 新特性
Hibernate教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微软准备淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium结合使用(完整篇)
4.
windows服务基础
5.
mysql 查看线程及kill线程
6.
DevExpresss LookUpEdit详解
7.
GitLab简单配置SSHKey与计算机建立连接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人属性“Generative Adversarial Models for People Attribute Recognition in Surveillance”
3.
Attribute-Recognition行人属性识别资料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人属性识别:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
7.
行人属性识别:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人属性“Attribute Recognition by Joint Recurrent Learning of Context and Correlation”
>>更多相关文章<<