行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”

行人属性预测中被多篇论文引用的论文。内容相对简单,两个网络结构,DeepSAR对每个属性独立预测,DeepMAR多属性联合预测。 目前属性预测关注的两个场景:自然场景和监控场景。自然场景图像质量一般比较高,而监控场景图像一般比较模糊、分辨率低、光线变化比较大。属性间一般是相互关联的,如头发的长度可以帮助性别的识别。 网络结构: 属性通常不具有同一分布,为解决样本不均问题,提出改进的损失函数: 其中
相关文章
相关标签/搜索