大数据和人工智能已经宣传了好多年, Hadoop 和 Spark 也已经发布了很长时间, 一直想试试, 可是工做也遇不到使用的场景, 就一直拖着. 此次在极客时间上选了蔡元楠老师的《大规模数据处理实战》的课. 其中介绍了不少 Spark 的内容, 就此机会, 也在虚拟机中配置了 Spark 的单机环境.html
一方面, 熟悉熟悉 Spark 的用法; 另外一方面, 虽然尚未接触到大数据分析的场景, 可是即便是了解了解 Spark 中处理大数据的机制, API 的设计, 也能够开拓平时编程的思路.java
我是 Debian10 上配置的.python
JDK 使用的是 Oracle 的标准 JDK1.8 版本, 国内从 Oracle 官网上下载 JDK 很是慢, 推荐使用华为的 mirror: https://mirrors.huaweicloud.com/java/jdk/8u202-b08/jdk-8u202-linux-x64.tar.gzlinux
下载后, 我是将其解压到 /usr/local 文件夹sql
$ wget https://mirrors.huaweicloud.com/java/jdk/8u202-b08/jdk-8u202-linux-x64.tar.gz $ sudo tar zxvf jdk-8u202-linux-x64.tar.gz -C /usr/local
而后配置环境变量, 若是是 bash, 则配置 ~/.bashrc; 若是是 zsh, 则配置 ~/.zshenvapache
# java export JAVA_HOME=/usr/local/jdk1.8 export PATH=$PATH:$JAVA_HOME/bin
配置好以后, 经过以下命令检查是否安装配置成功:编程
$ java -version java version "1.8.0_202" Java(TM) SE Runtime Environment (build 1.8.0_202-b08) Java HotSpot(TM) 64-Bit Server VM (build 25.202-b08, mixed mode)
Spark 安装也很是简单, 从官网上下载最新的 packagea, 我下载的最新版本以下:bash
$ wget http://mirror.bit.edu.cn/apache/spark/spark-3.0.0-preview2/spark-3.0.0-preview2-bin-hadoop2.7.tgz $ sudo tar zxvf spark-3.0.0-preview2-bin-hadoop2.7.tgz -C /usr/local
下载后一样, 也解压到 /usr/local 文件夹app
Spark 也须要配置相应的环境变量: (同配置 JDK 同样, 根据你使用的是 bash 仍是 zsh, 配置环境变量到不一样的文件中)oop
# spark export SPARK_HOME=/usr/local/spark export PATH=$PATH:$SPARK_HOME/bin
配置完成后, 在命令行输入以下命令看看是否能成功运行:
$ pyspark Python 2.7.16 (default, Oct 10 2019, 22:02:15) [GCC 8.3.0] on linux2 Type "help", "copyright", "credits" or "license" for more information. 20/03/02 15:21:23 WARN Utils: Your hostname, debian-wyb resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3) 20/03/02 15:21:23 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 20/03/02 15:21:23 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). /usr/local/spark/python/pyspark/context.py:219: DeprecationWarning: Support for Python 2 and Python 3 prior to version 3.6 is deprecated as of Spark 3.0. See also the plan for dropping Python 2 support at https://spark.apache.org/news/plan-for-dropping-python-2-support.html. DeprecationWarning) Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 3.0.0-preview2 /_/ Using Python version 2.7.16 (default, Oct 10 2019 22:02:15) SparkSession available as 'spark'.
注 这里的 pyspark 使用的 2.x 版本的 python, 后续咱们配置了 python 环境以后, 会在 python3 下开发
Debian10 系统中自带了 python2 和 python3 的环境, 为了避免影响现有系统的默认环境, 咱们安装 virtualenv 来使用 spark
首先, 安装 virtualenv, 并生成一个独立的 python3 环境
$ pip3 install virtualenv $ virtualenv py3-vm
启动 py3-vm, 并在其中安装 pyspark, 开发 spark 的示例
$ source ./py3-vm/bin/activate $ pip install pyspark $ pip install findspark
退出上面的 py3-vm, 使用以下命令:
$ deactive
上述环境都配置以后, 下面用一个简单的例子来尝试 spark 的 API 强大之处. 咱们构造一个订单统计的例子:
1 import findspark 2 3 findspark.init() 4 5 if __name__ == "__main__": 6 from pyspark.sql import SparkSession 7 from pyspark.sql.functions import * 8 9 spark = SparkSession\ 10 .builder\ 11 .appName('order stat')\ 12 .getOrCreate() 13 14 lines = spark.read.csv("./orders.csv", 15 sep=",", 16 schema="order INT, shop STRING, price DOUBLE") 17 18 # 统计各个店铺的订单数 19 orderCounts = lines.groupBy('shop').count() 20 orderCounts.show() 21 22 # 统计各个店铺的订单金额 23 shopPrices = lines.groupBy('shop').sum('price') 24 shopPrices.show() 25 26 spark.stop()
1,京东,10.0 2,京东,20.0 3,天猫,21.0 4,京东,22.0 5,天猫,11.0 6,京东,22.0 7,天猫,23.0 8,天猫,24.0 9,天猫,40.0 10,天猫,70.0 11,天猫,10.0 12,天猫,20.0
$ python order_stat.py 20/03/02 17:40:50 WARN Utils: Your hostname, debian-wyb resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3) 20/03/02 17:40:50 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 20/03/02 17:40:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). +----|-----+ |shop|count| +----|-----+ |京东| 4| |天猫| 8| +----|-----+ +----|----------+ |shop|sum(price)| +----|----------+ |京东| 74.0| |天猫| 219.0| +----|----------+