【Keras之父】DL用于CV

一. 密集连接层和卷积层的根本区别是 Dense层从输入特征空间中学到的是全局模式(涉及所有像素的模式) 卷积层学到的局部模式,对图像来说学到的就是在输入图像的二维小窗口中发现的模式。 二. 卷积神经网络具有以下2个有趣的性质        1.具有平移不变性(因为视觉世界从根本上具有平移不变性)。CNN在图像某个位置学到的模式,可以在图像任何其他位置识别这个模式,这使得CNN在处理图像时可以高效
相关文章
相关标签/搜索