最近,有部分用户飘了……node
以为Rainbond提供的既简洁、又易用、并且生产就绪的Kubernets体验不过瘾……linux
想要挑战一下Kubernetes全手动部署……nginx
并在凌晨一点拨通了客服小哥的电话……git
所以本着不重复造轮子而且关爱客服小哥身心健康的主张,咱们搬来了Kairen的精彩教程——github
Kubernetes官方提供了多种安装方式Picking the right solution,本文将以全手动安装方式
来部署Kubernetes v1.8.x版本,学习和了解Kubernetes的构建流程。web
版本明细:docker
系统:ubuntu 16.x
或 centos 7.x
节点:json
master为主要控制节点和部署节点,node为应用运行节点 全部操做均为
root
bootstrap
安装前需确认如下事项:ubuntu
$ systemctl stop firewalld && systemctl disable firewalld
$ setenforce 0
$ vim /etc/selinux/config
SELINUX=disabled
复制代码
/etc/host
解析到全部主机...
172.16.35.10 node1
172.16.35.11 node2
172.16.35.12 master1
复制代码
全部节点都须要安装docker
$ curl -fsSL "https://get.docker.com/" | sh
复制代码
注意:centos安装docker完成后须要执行:
$ systemctl enable docker && systemctl start docker
复制代码
编辑/lib/systemd/system/docker.service
,在ExecStart=..
加入:
ExecStartPost=/sbin/iptables -A FORWARD -s 0.0.0.0/0 -j ACCEPT
复制代码
完成后重启docker服务:
$ systemctl daemon-reload && systemctl restart docker
复制代码
全部节点都须要设定/etc/sysctl.d/k8s.conf
系统参数
$ cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
$ sysctl -p /etc/sysctl.d/k8s.conf
复制代码
在master1安装CFSSL
工具,用来创建TLS certificates
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
$ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
$ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
$ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson
复制代码
安装Kubernetes以前,咱们须要完成一些必要的系统配置,高可用共享配置和服务发现存储Etcd即是其中的重要一环,节点会从Etcd中获取所需数据。
这里须要生成client和server各组件certificate,代替kubernetes admin user生成client证书。
首先在master1
创建/etc/etcd/ssl
目录,然后进入目录进行如下操做:
$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
复制代码
下载ca-config.json
和etcd-ca-csr.json
:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
$ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca
$ ls etcd-ca*.pem
etcd-ca-key.pem etcd-ca.pem
复制代码
下载etcd-csr.json
并生成Etcd certificate证书:
$ wget "${PKI_URL}/etcd-csr.json"
$ cfssl gencert \
-ca=etcd-ca.pem \
-ca-key=etcd-ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
etcd-csr.json | cfssljson -bare etcd
$ ls etcd*.pem
etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem
复制代码
若是节点IP不一样,须要修改
etcd-csr.json
的hosts
完成后删除没必要要的文件:
$ rm -rf *.json
复制代码
并确认/etc/etcd/ssl
包含:
$ ls /etc/etcd/ssl
etcd-ca.csr etcd-ca-key.pem etcd-ca.pem etcd.csr etcd-key.pem etcd.pem
复制代码
首先在master1
节点下载Etcd,解压到/opt
安装:
$ export ETCD_URL="https://github.com/coreos/etcd/releases/download"
$ cd && wget -qO- --show-progress "${ETCD_URL}/v3.2.9/etcd-v3.2.9-linux-amd64.tar.gz" | tar -zx
$ mv etcd-v3.2.9-linux-amd64/etcd* /usr/local/bin/ && rm -rf etcd-v3.2.9-linux-amd64
复制代码
完成后新建Etcd Group和User,并设定Etcd目录:
$ groupadd etcd && useradd -c "Etcd user" -g etcd -s /sbin/nologin -r etcd
复制代码
下载etcd相关配置,咱们未来管理Etcd:
$ export ETCD_CONF_URL="https://kairen.github.io/files/manual-v1.8/master"
$ wget "${ETCD_CONF_URL}/etcd.conf" -O /etc/etcd/etcd.conf
$ wget "${ETCD_CONF_URL}/etcd.service" -O /lib/systemd/system/etcd.service
复制代码
若是没用本文准备部分的IP,请用本身的IP代替
172.16.35.12
创建var 存放数据,而后启动Etcd服务:
$ mkdir -p /var/lib/etcd && chown etcd:etcd -R /var/lib/etcd /etc/etcd
$ systemctl enable etcd.service && systemctl start etcd.service
复制代码
经过如下命令验证:
$ export CA="/etc/etcd/ssl"
$ ETCDCTL_API=3 etcdctl \
--cacert=${CA}/etcd-ca.pem \
--cert=${CA}/etcd.pem \
--key=${CA}/etcd-key.pem \
--endpoints="https://172.16.35.12:2379" \
endpoint health
# output
https://172.16.35.12:2379 is healthy: successfully committed proposal: took = 641.36µs
复制代码
Master是Kubernetes的大总管,经过apiserver
、Controller manager
以及Scheduler
管理全部节点。
本部分将下载Kubernetes并安装到master1节点上,而后生成相关TLS certificates和CA,供集群组件使用。
# Download Kubernetes
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.6/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
$ chmod +x /usr/local/bin/kubelet /usr/local/bin/kubectl
# Download CNI
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
复制代码
与Etcd部分原理同样,操做也截然不同,首先在master1
创建pki
目录,并进入目录执行:
$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
$ export KUBE_APISERVER="https://172.16.35.12:6443"
复制代码
下载ca-config.json
和etcd-ca-csr.json
:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*.pem
ca-key.pem ca.pem
复制代码
下载apiserver-csr.json
,生成kube-apiserver certificate
证书:
$ wget "${PKI_URL}/apiserver-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=10.96.0.1,172.16.35.12,127.0.0.1,kubernetes.default \
-profile=kubernetes \
apiserver-csr.json | cfssljson -bare apiserver
$ ls apiserver*.pem
apiserver-key.pem apiserver.pem
复制代码
若是节点IP不一样,须要修改
-hostname
下载front-proxy-ca-csr.json
,生成Front proxy CA,Front proxy主要用在API aggregator上:
$ wget "${PKI_URL}/front-proxy-ca-csr.json"
$ cfssl gencert \
-initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca
$ ls front-proxy-ca*.pem
front-proxy-ca-key.pem front-proxy-ca.pem
复制代码
下载front-proxy-client-csr.json
,生成front-proxy-client证书:
$ wget "${PKI_URL}/front-proxy-client-csr.json"
$ cfssl gencert \
-ca=front-proxy-ca.pem \
-ca-key=front-proxy-ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
front-proxy-client-csr.json | cfssljson -bare front-proxy-client
$ ls front-proxy-client*.pem
front-proxy-client-key.pem front-proxy-client.pem
复制代码
手工方式生成CA很是麻烦,只适合少许机器,每次签证时都须要绑定Node IP,随着机器增长会带来不少的不便,所以这里使用TLS Bootstrapping的方式来进行受权,由apiserver自动为符合条件的Node发送证书受权加入集群。
作法是在kubelet启动时,向kuber-apiserver传送TLS Bootstrapping请求,而kube-apiserver验证kubelet请求的token是否与设定的同样,若是同样则自动生成Kuberlet证书和密钥。具体做法能够参考TLS bootstrapping。
首先生成BOOTSTRAP_TOKEN
,并创建bootstrap.conf
的kubeconfig:
$ export BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
$ cat <<EOF > /etc/kubernetes/token.csv
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
# bootstrap set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../bootstrap.conf
# bootstrap set-credentials
$ kubectl config set-credentials kubelet-bootstrap \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=../bootstrap.conf
# bootstrap set-context
$ kubectl config set-context default \
--cluster=kubernetes \
--user=kubelet-bootstrap \
--kubeconfig=../bootstrap.conf
# bootstrap set default context
$ kubectl config use-context default --kubeconfig=../bootstrap.conf
复制代码
若是想用CA的方式来认证,能够参考Kubelet certificate
下载admin-csr.json
,并生成admin certificate
证书:
$ wget "${PKI_URL}/admin-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
admin-csr.json | cfssljson -bare admin
$ ls admin*.pem
admin-key.pem admin.pem
复制代码
而后执行一下命令生成名为admin.conf
的kubeconfig:
# admin set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../admin.conf
# admin set-credentials
$ kubectl config set-credentials kubernetes-admin \
--client-certificate=admin.pem \
--client-key=admin-key.pem \
--embed-certs=true \
--kubeconfig=../admin.conf
# admin set-context
$ kubectl config set-context kubernetes-admin@kubernetes \
--cluster=kubernetes \
--user=kubernetes-admin \
--kubeconfig=../admin.conf
# admin set default context
$ kubectl config use-context kubernetes-admin@kubernetes \
--kubeconfig=../admin.conf
复制代码
下载manager-csr.json
,并生成kube-controller-manager certificate
证书:
$ wget "${PKI_URL}/manager-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
manager-csr.json | cfssljson -bare controller-manager
$ ls controller-manager*.pem
复制代码
若是节点IP不一样,须要修改
manager-csr.json
的hosts
而后执行命令生成名为controller-manager.conf
的kubeconfig:
# controller-manager set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../controller-manager.conf
# controller-manager set-credentials
$ kubectl config set-credentials system:kube-controller-manager \
--client-certificate=controller-manager.pem \
--client-key=controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=../controller-manager.conf
# controller-manager set-context
$ kubectl config set-context system:kube-controller-manager@kubernetes \
--cluster=kubernetes \
--user=system:kube-controller-manager \
--kubeconfig=../controller-manager.conf
# controller-manager set default context
$ kubectl config use-context system:kube-controller-manager@kubernetes \
--kubeconfig=../controller-manager.conf
复制代码
下载scheduler-csr.json
,生成kube-scheduler certificate证书:
$ wget "${PKI_URL}/scheduler-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
scheduler-csr.json | cfssljson -bare scheduler
$ ls scheduler*.pem
scheduler-key.pem scheduler.pem
复制代码
若是节点IP不一样,须要修改
scheduler-csr.json
的hosts
而后执行一下命令生成名为scheduler.conf
的kubeconfig:
# scheduler set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../scheduler.conf
# scheduler set-credentials
$ kubectl config set-credentials system:kube-scheduler \
--client-certificate=scheduler.pem \
--client-key=scheduler-key.pem \
--embed-certs=true \
--kubeconfig=../scheduler.conf
# scheduler set-context
$ kubectl config set-context system:kube-scheduler@kubernetes \
--cluster=kubernetes \
--user=system:kube-scheduler \
--kubeconfig=../scheduler.conf
# scheduler set default context
$ kubectl config use-context system:kube-scheduler@kubernetes \
--kubeconfig=../scheduler.conf
复制代码
下载kubelet-csr.json
,并生成master node certificate证书:
$ wget "${PKI_URL}/kubelet-csr.json"
$ sed -i 's/$NODE/master1/g' kubelet-csr.json
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=master1,172.16.35.12 \
-profile=kubernetes \
kubelet-csr.json | cfssljson -bare kubelet
$ ls kubelet*.pem
kubelet-key.pem kubelet.pem
复制代码
$NODE
须要随节点名称不一样而改变
而后执行一下命令生成名为kubelet.conf
的kubeconfig:
# kubelet set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../kubelet.conf
# kubelet set-credentials
$ kubectl config set-credentials system:node:master1 \
--client-certificate=kubelet.pem \
--client-key=kubelet-key.pem \
--embed-certs=true \
--kubeconfig=../kubelet.conf
# kubelet set-context
$ kubectl config set-context system:node:master1@kubernetes \
--cluster=kubernetes \
--user=system:node:master1 \
--kubeconfig=../kubelet.conf
# kubelet set default context
$ kubectl config use-context system:node:master1@kubernetes \
--kubeconfig=../kubelet.conf
复制代码
Service account不须要CA认证,也就不须要CA来作Service account key的检查,这里咱们创建一组private和public的密钥供Service account key使用:
$ openssl genrsa -out sa.key 2048 $ openssl rsa -in sa.key -pubout -out sa.pub $ ls sa.* sa.key sa.pub
复制代码
完成后删除没必要要文件:
$ rm -rf *.json *.csr
复制代码
确认/etc/kubernetes
和/etc/kubernetes/pki
包含如下文件:
$ ls /etc/kubernetes/
admin.conf bootstrap.conf controller-manager.conf kubelet.conf pki scheduler.conf token.csv
$ ls /etc/kubernetes/pki
admin-key.pem apiserver-key.pem ca-key.pem controller-manager-key.pem front-proxy-ca-key.pem front-proxy-client-key.pem kubelet-key.pem sa.key scheduler-key.pem
admin.pem apiserver.pem ca.pem controller-manager.pem front-proxy-ca.pem front-proxy-client.pem kubelet.pem sa.pub scheduler.pem
复制代码
下载Kubernetes核心组件Yaml文件,这里咱们利用Kubernetes Statics Pod来创建Master核心组件,所以下载全部Static Pod文件到etc/kubernetes/manifests
目录“
$ export CORE_URL="https://kairen.github.io/files/manual-v1.8/master"
$ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests
$ for FILE in apiserver manager scheduler; do
wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
done
复制代码
一样的,若是IP与本文IP准备不一样的话,须要修改
apiserver.yml
、manager.yml
、scheduler.yml
apiserver中的
NodeRestriction
请参考Using Node Authorization
生成一个用来加密Etcd的key
$ head -c 32 /dev/urandom | base64
SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
复制代码
在/etc/kubernetes/
目录创建encryption.yml
的加密YAML文件:
$ cat <<EOF > /etc/kubernetes/encryption.yml
kind: EncryptionConfig
apiVersion: v1
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
- identity: {}
EOF
复制代码
Etcd加密可参考Encrypting data at rest
在/etc/kubernetes/
目录创建audit-policy.yml
的auditing policay YAML文件:
$ cat <<EOF > /etc/kubernetes/audit-policy.yml
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
- level: Metadata
EOF
复制代码
audit policy请参考Audit
下载kubelet.service
相关文件来管理kubelet:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/master"
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
复制代码
若
cluster-dns
或cluster-domain
有变更,须要修改10-kubelet.conf
最后创建var并启动kubelet服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes
$ systemctl enable kubelet.service && systemctl start kubelet.service
复制代码
完成后须要一段时间来下载镜像文件并启动组件:
$ watch netstat -ntlp
tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 23012/kubelet
tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 22305/kube-schedule
tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 22529/kube-controll
tcp6 0 0 :::6443 :::* LISTEN 22956/kube-apiserve
复制代码
看到上述信息即代表服务启动正常,若是出现问题可经过docker cli查看
完成后,复制admin kubeconfig并经过如下命令验证:
$ cp /etc/kubernetes/admin.conf ~/.kube/config
$ kubectl get cs
NAME STATUS MESSAGE ERROR
etcd-0 Healthy {"health": "true"}
scheduler Healthy ok
controller-manager Healthy ok
$ kubectl get node
NAME STATUS ROLES AGE VERSION
master1 NotReady master 1m v1.8.6
$ kubectl -n kube-system get po
NAME READY STATUS RESTARTS AGE
kube-apiserver-master1 1/1 Running 0 4m
kube-controller-manager-master1 1/1 Running 0 4m
kube-scheduler-master1 1/1 Running 0 4m
复制代码
确认服务可以执行logs等命令:
$ kubectl -n kube-system logs -f kube-scheduler-master1
Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-apiserver-master1)
复制代码
出现403 Forbidden问题代表
kube-apiserver user
并无nodes的权限
因为上述权限问题,咱们须要创建一个apiserver-to-kubelet-rbac.yml
来定义权限,以供咱们执行logs、exec等命令:
$ cd /etc/kubernetes/
$ export URL="https://kairen.github.io/files/manual-v1.8/master"
$ wget "${URL}/apiserver-to-kubelet-rbac.yml.conf" -O apiserver-to-kubelet-rbac.yml
$ kubectl apply -f apiserver-to-kubelet-rbac.yml
# 測試 logs
$ kubectl -n kube-system logs -f kube-scheduler-master1
...
I1031 03:22:42.527697 1 leaderelection.go:184] successfully acquired lease kube-system/kube-scheduler
复制代码
Node运行容器实例的节点,即工做节点。本部分咱们会下载Kubernetes binary并创建node 的certificate来提供给节点注册认证用。Kubernetes使用Node Authorizer来提供Authorization mode,这种受权模式会替Kubelet生成API request。
开始前,咱们先在master1
将须要的ca和cert复制到Node节点上:
$ for NODE in node1 node2; do
ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
ssh ${NODE} "mkdir -p /etc/etcd/ssl"
# Etcd ca and cert
for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
done
# Kubernetes ca and cert
for FILE in pki/ca.pem pki/ca-key.pem bootstrap.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done
复制代码
首先获取全部须要执行的文件:
# Download Kubernetes
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.6/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ chmod +x /usr/local/bin/kubelet
# Download CNI
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
复制代码
下载Kubernetes相关文件,包括drop-in file、systemd service等:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/node"
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
复制代码
若是
cluster-dns
或cluster-domain
有改变的话,须要修改10-kubelet.conf
而后在全部node创建var,并启动kubelet服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes /etc/kubernetes/manifests
$ systemctl enable kubelet.service && systemctl start kubelet.service
复制代码
重复完成全部节点后,在master1节点创建ClusterRoleBinding(由于咱们采用的是TLS Bootstrapping):
$ kubectl create clusterrolebinding kubelet-bootstrap \
--clusterrole=system:node-bootstrapper \
--user=kubelet-bootstrap
复制代码
在master进行验证,咱们能够看到节点处于pending:
$ kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 2s kubelet-bootstrap Pending
node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 2s kubelet-bootstrap Pending
复制代码
经过kubectl,容许节点加入集群:
$ kubectl get csr | awk '/Pending/ {print $1}' | xargs kubectl certificate approve
certificatesigningrequest "node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE" approved
certificatesigningrequest "node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE" approved
$ kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 30s kubelet-bootstrap Approved,Issued
node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 30s kubelet-bootstrap Approved,Issued
$ kubectl get no
NAME STATUS ROLES AGE VERSION
master1 NotReady master 21m v1.8.6
node1 NotReady node 8s v1.8.6
node2 NotReady node 8s v1.8.6
复制代码
完成以上全部步骤,咱们还须要安装一些插件,好比kube-dns、kube-proxy等等。
Kube-proxy是实现Service的关键组件,kube-proxy会在每一个节点上执行,而后监听API Server的Service和Endpoint变化,并根据变化执行iptables实现网络转发。
这里咱们须要DaemonSet来执行,并须要生成一些certificate。
首先在master1
下载kube-proxy-csr.json
,并生成kube-proxy certificate证书:
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
$ cd /etc/kubernetes/pki
$ wget "${PKI_URL}/kube-proxy-csr.json" "${PKI_URL}/ca-config.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
kube-proxy-csr.json | cfssljson -bare kube-proxy
$ ls kube-proxy*.pem
kube-proxy-key.pem kube-proxy.pem
复制代码
而后经过如下命令生成名为`kube-proxy.conf·的kubeconfig:
# kube-proxy set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server="https://172.16.35.12:6443" \
--kubeconfig=../kube-proxy.conf
# kube-proxy set-credentials
$ kubectl config set-credentials system:kube-proxy \
--client-key=kube-proxy-key.pem \
--client-certificate=kube-proxy.pem \
--embed-certs=true \
--kubeconfig=../kube-proxy.conf
# kube-proxy set-context
$ kubectl config set-context system:kube-proxy@kubernetes \
--cluster=kubernetes \
--user=system:kube-proxy \
--kubeconfig=../kube-proxy.conf
# kube-proxy set default context
$ kubectl config use-context system:kube-proxy@kubernetes \
--kubeconfig=../kube-proxy.conf
复制代码
删除没必要要的文件:
$ rm -rf *.json
复制代码
确认/etc/kubernetes
有如下文件:
$ ls /etc/kubernetes/
admin.conf bootstrap.conf encryption.yml kube-proxy.conf pki token.csv
audit-policy.yml controller-manager.conf kubelet.conf manifests scheduler.conf
复制代码
在master1
上将kube-proxy相关文件复制到Node节点上:
$ for NODE in node1 node2; do
echo "--- $NODE ---"
for FILE in pki/kube-proxy.pem pki/kube-proxy-key.pem kube-proxy.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done
复制代码
完成后,在master1
经过kubectl创建kube-proxy daemon:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ mkdir -p /etc/kubernetes/addons && cd /etc/kubernetes/addons
$ wget "${ADDON_URL}/kube-proxy.yml.conf" -O kube-proxy.yml
$ kubectl apply -f kube-proxy.yml
$ kubectl -n kube-system get po -l k8s-app=kube-proxy
NAME READY STATUS RESTARTS AGE
kube-proxy-bpp7q 1/1 Running 0 47s
kube-proxy-cztvh 1/1 Running 0 47s
kube-proxy-q7mm4 1/1 Running 0 47s
复制代码
Kube DNS是Kubernetes集群内部Pod之间通讯的重要插件,容许Pod经过Domain Name连接Service,主要由Kube DNS与Sky DNS组合而成,经过Kube DNS监听Service与Endpoint变化,来提供给Sky DNS信息以更新解析位址。
安装只须要在master1
经过kubectl创建kube-dns deployment便可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ wget "${ADDON_URL}/kube-dns.yml.conf" -O kube-dns.yml
$ kubectl apply -f kube-dns.yml
$ kubectl -n kube-system get po -l k8s-app=kube-dns
NAME READY STATUS RESTARTS AGE
kube-dns-6cb549f55f-h4zr5 0/3 Pending 0 40s
复制代码
Calico是一款纯3层协议(不须要Overlay 网路),已与各类云原平生台有良好的整合,在每一个节点节点利用Linux Kernel实现高效的vRouter来负责数据转发,而当数据中心复杂度增长时,能够用BGP route reflector来达成。
首先在master1
经过kubectl创建Calico policy controller:
$ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network"
$ wget "${CALICO_CONF_URL}/calico-controller.yml.conf" -O calico-controller.yml
$ kubectl apply -f calico-controller.yml
$ kubectl -n kube-system get po -l k8s-app=calico-policy
NAME READY STATUS RESTARTS AGE
calico-policy-controller-5ff8b4549d-tctmm 0/1 Pending 0 5s
复制代码
若是节点IP不一样,须要修改calico-controller.yml的ETCD_ENDPOINTS
在`master1·下载Calico CLI工具:
$ wget https://github.com/projectcalico/calicoctl/releases/download/v1.6.1/calicoctl
$ chmod +x calicoctl && mv calicoctl /usr/local/bin/
复制代码
而后在全部节点下载Calico,并执行如下命令:
$ export CALICO_URL="https://github.com/projectcalico/cni-plugin/releases/download/v1.11.0"
$ wget -N -P /opt/cni/bin ${CALICO_URL}/calico
$ wget -N -P /opt/cni/bin ${CALICO_URL}/calico-ipam
$ chmod +x /opt/cni/bin/calico /opt/cni/bin/calico-ipam
复制代码
接着在全部节点下载CNI plugins以及calico-node.service:
$ mkdir -p /etc/cni/net.d
$ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network"
$ wget "${CALICO_CONF_URL}/10-calico.conf" -O /etc/cni/net.d/10-calico.conf
$ wget "${CALICO_CONF_URL}/calico-node.service" -O /lib/systemd/system/calico-node.service
复制代码
若是节点IP不一样,须要修改10-calico.conf的etcd_endpoints
若是部署机器是虚拟机,须要修改calico-node.service,并在IP_AUTODETECTION_METHOD (包含IP6)部分指定绑定的网卡,以避免预设绑定到NAT网路上
以后在全部节点启动Calico-node:
$ systemctl enable calico-node.service && systemctl start calico-node.service
复制代码
在master1
查看Calico nodes:
$ cat <<EOF > ~/calico-rc
export ETCD_ENDPOINTS="https://172.16.35.12:2379"
export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"
export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"
export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
EOF
$ . ~/calico-rc
$ calicoctl get node -o wide
NAME ASN IPV4 IPV6
master1 (64512) 172.16.35.12/24
node1 (64512) 172.16.35.10/24
node2 (64512) 172.16.35.11/24
复制代码
查看pending的pod是否已执行:
$ kubectl -n kube-system get po
NAME READY STATUS RESTARTS AGE
calico-policy-controller-5ff8b4549d-tctmm 1/1 Running 0 4m
kube-apiserver-master1 1/1 Running 0 20m
kube-controller-manager-master1 1/1 Running 0 20m
kube-dns-6cb549f55f-h4zr5 3/3 Running 0 5m
kube-proxy-fnrkb 1/1 Running 0 6m
kube-proxy-l72bq 1/1 Running 0 6m
kube-proxy-m6rfw 1/1 Running 0 6m
kube-scheduler-master1 1/1 Running 0 20m
复制代码
省事的作法是用Standard Hosted方式安装。
本部分说明如何部署官方经常使用的addons,例如dashboard、heapster等。
Dashboard是Kubernetes官方开发的仪表板,让咱们以能够i 经过web-based方式管理kubernetes集群。
在master1
经过kubectl创建kubernetes dashboard便可:
$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
$ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
NAME READY STATUS RESTARTS AGE
po/kubernetes-dashboard-747c4f7cf-md5m8 1/1 Running 0 56s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes-dashboard ClusterIP 10.98.120.209 <none> 443/TCP 56s
复制代码
这边会额外创建一个名称为open-api
的Cluster Role Binding,放拜年测试使用,通常状况下不开启(开启会存取全部API)。
$ cat <<EOF | kubectl create -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: open-api
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: system:anonymous
EOF
复制代码
管理者能够针对特定使用者来开放API存取权限,这里咱们为了方便直接绑在cluster-admin cluster role。
1.7版本后的Dashboard再也不提供全部权限,须要创建一个service account来绑定cluster-admin role:
$ kubectl -n kube-system create sa dashboard
$ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard
$ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}')
$ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}'
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw
复制代码
复制token,而后贴到Kubernetes dashboard
Heapster是Kubernetes社区维护的容器集群监控和分析工具。Heapster会从Kubernetes apiserver取得全部Node数据,而后再经过Node获取kubelet上的数据,最后再将全部收集到数据送到Heapster后台储存InfluxDB,最后利用Grafana抓取InfluxDB数据源来进行展现。
在master1
经过kubectl来创建kubernetes monitor便可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ wget ${ADDON_URL}/kube-monitor.yml.conf -O kube-monitor.yml
$ kubectl apply -f kube-monitor.yml
$ kubectl -n kube-system get po,svc
NAME READY STATUS RESTARTS AGE
...
po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m
po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m
svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m
svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m
···
复制代码
Kubernetes能够选择使用指令直接创建应用和服务,或者咱们能够写YAML、JSON文件来配置,以下所示:
$ kubectl run nginx --image=nginx --port=80
$ kubectl expose deploy nginx --port=80 --type=LoadBalancer --external-ip=172.16.35.12
$ kubectl get svc,po
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1h
svc/nginx LoadBalancer 10.97.121.243 172.16.35.12 80:30344/TCP 22s
NAME READY STATUS RESTARTS AGE
po/nginx-7cbc4b4d9c-7796l 1/1 Running 0 28s 192.160.57.181 ,172.16.35.12 80:32054/TCP 21s
复制代码
这里type能够选择NodePort和LoadBalancer在本地裸机部署,二者差别在于NodePort只映射Host port到Container port,而LoadBalancer则继承NodePort额外映射Host target port到Container port
最后,咱们能够经过如下方式来扩展服务数量:
$ kubectl scale deploy nginx --replicas=2
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-158599303-0h9lr 1/1 Running 0 25s 10.244.100.5 node2
nginx-158599303-k7cbt 1/1 Running 0 1m 10.244.24.3 node1
复制代码
相关阅读
技术
Kubernetes Autoscaling是如何工做的? 2018/05/07
技术
用户评测 | Docker管理面板系列——云帮(Rainbond 出色的k8s管理面板) 2018/05/09
技术
如何把应用转移到Kubernetes 2018/05/04
技术
Kubernetes伸缩到2500个节点中遇到的问题和解决方法 2018/04/24
技术
kubernetes容器网络接口(CNI) midonet网络插件的设计与实现 2017/05/04
技术
在生产环境使用Kuberntes一年后,咱们总结了这些经验和教训 2017/02/23
技术
关于K8s容器集群日志收集的总结 2016/12/15
技术
Kubernetes集群中的高性能网络策略 2016/12/08
行业
开了香槟的Kubernetes并不打算放慢成功的脚步 2018/05/09
行业
上手kubernetes以前,你应该知道这6件事 2018/05/03
行业
为何说Kubernetes是云服务的将来? 2016/10/21