Kubernetes v1.10.x+HA 全手动安装教程

本篇延续过往手动安装方式来部署 Kubernetes v1.10.x 版本的 High Availability 集群,主要目的是学习 Kubernetes 安装的一些元件关析与流程。若不想这么累的话,能够参考 Picking the Right Solution 来选择本身最喜欢的方式。html

本次安装的软件版本:node

  • Kubernetes v1.10.0
  • CNI v0.6.0
  • Etcd v3.1.13
  • Calico v3.0.4
  • Docker CE latest version

节点信息

本教学将如下列节点数与规格来进行部署 Kubernetes 集群,操做系统可采用Ubuntu 16.x与CentOS 7.x:linux

IP Address Hostname CPU Memory
192.16.35.11 k8s-m1 1 4G
192.16.35.12 k8s-m2 1 4G
192.16.35.13 k8s-m3 1 4G
192.16.35.14 k8s-n1 1 4G
192.16.35.15 k8s-n2 1 4G
192.16.35.16 k8s-n2 1 4G

 

另外由全部 master 节点提供一组 VIP 192.16.35.10。nginx

  • 这边m为主要控制节点,n为应用程序工做节点。
  • 全部操做所有用root使用者进行(方便用),以 SRE 来讲不推荐。
  • 能够下载Vagrantfile 来创建 Virtualbox 虚拟机集群。不过须要注意机器资源是否足够。

事前准备

开始安装前须要确保如下条件已达成:git

  • 全部节点彼此网络互通,而且k8s-m1SSH 登入其余节点为 passwdless。
  • 全部防火墙与 SELinux 已关闭。如 CentOS:
$ systemctl stop firewalld && systemctl disable firewalld
$ setenforce 0
$ vim /etc/selinux/config
SELINUX=disabled
  • 全部节点须要设定/etc/hosts解析到全部集群主机。
...
192.16.35.11 k8s-m1
192.16.35.12 k8s-m2
192.16.35.13 k8s-m3
192.16.35.14 k8s-n1
192.16.35.15 k8s-n2
192.16.35.16 k8s-n3
  • 全部节点须要安装 Docker CE 版本的容器引擎:
$ curl -fsSL "https://get.docker.com/" | sh

不论是在 Ubuntu 或 CentOS 都只须要执行该指令就会自动安装最新版 Docker。
CentOS 安装完成后,须要再执行如下指令:github

$ systemctl enable docker && systemctl start docker

全部节点须要设定/etc/sysctl.d/k8s.conf的系统参数。docker

$ cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

$ sysctl -p /etc/sysctl.d/k8s.conf
  • Kubernetes v1.8+ 要求关闭系统 Swap,若不关闭则须要修改 kubelet 设定参数,在全部节点利用如下指令关闭:
$ swapoff -a && sysctl -w vm.swappiness=0

记得/etc/fstab也要注解掉SWAP挂载。json

  • 在全部节点下载 Kubernetes 二进制执行档:
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ chmod +x /usr/local/bin/kubelet

# node 请忽略下载 kubectl
$ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
$ chmod +x /usr/local/bin/kubectl
  • 在全部节点下载 Kubernetes CNI 二进制文件:
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
  • 在k8s-m1须要安装CFSSL工具,这将会用来创建 TLS Certificates。
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
$ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
$ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
$ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson

创建集群 CA keys 与 Certificates

在这个部分,将须要产生多个元件的 Certificates,这包含 Etcd、Kubernetes 元件等,而且每一个集群都会有一个根数位凭证认证机构(Root Certificate Authority)被用在认证 API Server 与 Kubelet 端的凭证。bootstrap

P.S. 这边要注意 CA JSON 档的CN(Common Name)与O(Organization)等内容是会影响 Kubernetes 元件认证的。vim

Etcd

首先在k8s-m1创建/etc/etcd/ssl资料夹,而后进入目录完成如下操做。

$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"

下载ca-config.json与etcd-ca-csr.json文件,并从 CSR json 产生 CA keys 与 Certificate:

$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
$ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca

下载etcd-csr.json文件,并产生 Etcd 证书:

$ wget "${PKI_URL}/etcd-csr.json"

$ cfssl gencert \
  -ca=etcd-ca.pem \
  -ca-key=etcd-ca-key.pem \
  -config=ca-config.json \
  -hostname=127.0.0.1,192.16.35.11,192.16.35.12,192.16.35.13 \
  -profile=kubernetes \
  etcd-csr.json | cfssljson -bare etcd

-hostname需修改为全部 masters 节点。

完成后删除没必要要文件:

$ rm -rf *.json *.csr

确认/etc/etcd/ssl有如下文件:

$ ls /etc/etcd/ssl
etcd-ca-key.pem  etcd-ca.pem  etcd-key.pem  etcd.pem

复制相关文件至其余 Etcd 节点,这边为全部master节点:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    for FILE in etcd-ca-key.pem  etcd-ca.pem  etcd-key.pem  etcd.pem; do
      scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
  done

Kubernetes

在k8s-m1创建pki资料夹,而后进入目录完成如下章节操做。

$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
$ export KUBE_APISERVER="https://192.16.35.10:6443"

下载ca-config.json与ca-csr.json文件,并产生 CA 金钥:

$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*.pem
ca-key.pem  ca.pem

API Server Certificate

下载apiserver-csr.json文件,并产生 kube-apiserver 凭证:

$ wget "${PKI_URL}/apiserver-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -hostname=10.96.0.1,192.16.35.10,127.0.0.1,kubernetes.default \
  -profile=kubernetes \
  apiserver-csr.json | cfssljson -bare apiserver

$ ls apiserver*.pem
apiserver-key.pem  apiserver.pem
  • 这边-hostname的96.0.1是 Cluster IP 的 Kubernetes 端点;
  • 16.35.10为虚拟 IP 位址(VIP);
  • default为 Kubernetes DN。

Front Proxy Certificate

下载front-proxy-ca-csr.json文件,并产生 Front Proxy CA 金钥,Front Proxy 主要是用在 API aggregator 上:

$ wget "${PKI_URL}/front-proxy-ca-csr.json"
$ cfssl gencert \
  -initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca

$ ls front-proxy-ca*.pem
front-proxy-ca-key.pem  front-proxy-ca.pem

下载front-proxy-client-csr.json文件,并产生 front-proxy-client 证书:

$ wget "${PKI_URL}/front-proxy-client-csr.json"

$ cfssl gencert \
  -ca=front-proxy-ca.pem \
  -ca-key=front-proxy-ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  front-proxy-client-csr.json | cfssljson -bare front-proxy-client

$ ls front-proxy-client*.pem
front-proxy-client-key.pem  front-proxy-client.pem

Admin Certificate

下载admin-csr.json文件,并产生 admin certificate 凭证:

$ wget "${PKI_URL}/admin-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  admin-csr.json | cfssljson -bare admin

$ ls admin*.pem
admin-key.pem  admin.pem

接着经过如下指令产生名称为 admin.conf 的 kubeconfig 档:

# admin set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../admin.conf

# admin set credentials
$ kubectl config set-credentials kubernetes-admin \
    --client-certificate=admin.pem \
    --client-key=admin-key.pem \
    --embed-certs=true \
    --kubeconfig=../admin.conf

# admin set context
$ kubectl config set-context kubernetes-admin@kubernetes \
    --cluster=kubernetes \
    --user=kubernetes-admin \
    --kubeconfig=../admin.conf

# admin set default context
$ kubectl config use-context kubernetes-admin@kubernetes \
    --kubeconfig=../admin.conf

Controller Manager Certificate

下载manager-csr.json文件,并产生 kube-controller-manager certificate 凭证:

$ wget "${PKI_URL}/manager-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  manager-csr.json | cfssljson -bare controller-manager

$ ls controller-manager*.pem
controller-manager-key.pem  controller-manager.pem

若节点 IP 不一样,须要修改manager-csr.json的hosts。

接着经过如下指令产生名称为controller-manager.conf的 kubeconfig 档:

# controller-manager set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../controller-manager.conf

# controller-manager set credentials
$ kubectl config set-credentials system:kube-controller-manager \
    --client-certificate=controller-manager.pem \
    --client-key=controller-manager-key.pem \
    --embed-certs=true \
    --kubeconfig=../controller-manager.conf

# controller-manager set context
$ kubectl config set-context system:kube-controller-manager@kubernetes \
    --cluster=kubernetes \
    --user=system:kube-controller-manager \
    --kubeconfig=../controller-manager.conf

# controller-manager set default context
$ kubectl config use-context system:kube-controller-manager@kubernetes \
    --kubeconfig=../controller-manager.conf

Scheduler Certificate

下载scheduler-csr.json文件,并产生 kube-scheduler certificate 凭证:

$ wget "${PKI_URL}/scheduler-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  scheduler-csr.json | cfssljson -bare scheduler

$ ls scheduler*.pem
scheduler-key.pem  scheduler.pem

若节点 IP 不一样,须要修改scheduler-csr.json的hosts。

接着经过如下指令产生名称为 scheduler.conf 的 kubeconfig 档:

# scheduler set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../scheduler.conf

# scheduler set credentials
$ kubectl config set-credentials system:kube-scheduler \
    --client-certificate=scheduler.pem \
    --client-key=scheduler-key.pem \
    --embed-certs=true \
    --kubeconfig=../scheduler.conf

# scheduler set context
$ kubectl config set-context system:kube-scheduler@kubernetes \
    --cluster=kubernetes \
    --user=system:kube-scheduler \
    --kubeconfig=../scheduler.conf

# scheduler use default context
$ kubectl config use-context system:kube-scheduler@kubernetes \
    --kubeconfig=../scheduler.conf

Master Kubelet Certificate

接着在全部k8s-m1节点下载kubelet-csr.json文件,并产生凭证:

$ wget "${PKI_URL}/kubelet-csr.json"

$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    cp kubelet-csr.json kubelet-$NODE-csr.json;
    sed -i "s/\$NODE/$NODE/g" kubelet-$NODE-csr.json;
    cfssl gencert \
      -ca=ca.pem \
      -ca-key=ca-key.pem \
      -config=ca-config.json \
      -hostname=$NODE \
      -profile=kubernetes \
      kubelet-$NODE-csr.json | cfssljson -bare kubelet-$NODE
  done

$ ls kubelet*.pem
kubelet-k8s-m1-key.pem  kubelet-k8s-m1.pem  kubelet-k8s-m2-key.pem  kubelet-k8s-m2.pem  kubelet-k8s-m3-key.pem  kubelet-k8s-m3.pem

这边须要依据节点修改-hostname与$NODE。

完成后复制 kubelet 凭证至其余master节点:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki"
    for FILE in kubelet-$NODE-key.pem kubelet-$NODE.pem ca.pem; do
      scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
  done

接着执行如下指令产生名称为kubelet.conf的 kubeconfig 档:

$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "cd /etc/kubernetes/pki && \
      kubectl config set-cluster kubernetes \
        --certificate-authority=ca.pem \
        --embed-certs=true \
        --server=${KUBE_APISERVER} \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-cluster kubernetes \
        --certificate-authority=ca.pem \
        --embed-certs=true \
        --server=${KUBE_APISERVER} \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-credentials system:node:${NODE} \
        --client-certificate=kubelet-${NODE}.pem \
        --client-key=kubelet-${NODE}-key.pem \
        --embed-certs=true \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-context system:node:${NODE}@kubernetes \
        --cluster=kubernetes \
        --user=system:node:${NODE} \
        --kubeconfig=../kubelet.conf && \
      kubectl config use-context system:node:${NODE}@kubernetes \
        --kubeconfig=../kubelet.conf && \
      rm kubelet-${NODE}.pem kubelet-${NODE}-key.pem"
  done

Service Account Key

Service account 不是经过 CA 进行认证,所以不要经过 CA 来作 Service account key 的检查,这边创建一组 Private 与 Public 金钥提供给 Service account key 使用:

$ openssl genrsa -out sa.key 2048
$ openssl rsa -in sa.key -pubout -out sa.pub
$ ls sa.*
sa.key  sa.pub

删除没必要要文件

全部信息准备完成后,就能够将一些没必要要文件删除:

$ rm -rf *.json *.csr scheduler*.pem controller-manager*.pem admin*.pem kubelet*.pem

复制文件至其余节点

复制凭证文件至其余master节点:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in $(ls /etc/kubernetes/pki/); do
      scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
  done

复制 Kubernetes config 文件至其余master节点:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in admin.conf controller-manager.conf scheduler.conf; do
      scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
  done

Kubernetes Masters

本部分将说明如何创建与设定 Kubernetes Master 角色,过程当中会部署如下元件:

  • kube-apiserver:提供 REST APIs,包含受权、认证与状态储存等。
  • kube-controller-manager:负责维护集群的状态,如自动扩展,滚动更新等。
  • kube-scheduler:负责资源排程,依据预约的排程策略将 Pod 分配到对应节点上。
  • Etcd:储存集群全部状态的 Key/Value 储存系统。
  • HAProxy:提供负载平衡器。
  • Keepalived:提供虚拟网络位址(VIP)。

部署与设定

首先在全部 master 节点下载部署元件的 YAML 文件,这边不采用二进制执行档与 Systemd 来管理这些元件,所有采用 Static Pod 来达成。这边将文件下载至/etc/kubernetes/manifests目录:

$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/master"
$ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests

$ for FILE in kube-apiserver kube-controller-manager kube-scheduler haproxy keepalived etcd etcd.config; do
    wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
    if [ ${FILE} == "etcd.config" ]; then
      mv etcd.config.yml /etc/etcd/etcd.config.yml
      sed -i "s/\${HOSTNAME}/${HOSTNAME}/g" /etc/etcd/etcd.config.yml
      sed -i "s/\${PUBLIC_IP}/$(hostname -i)/g" /etc/etcd/etcd.config.yml
    fi
  done

$ ls /etc/kubernetes/manifests
etcd.yml  haproxy.yml  keepalived.yml  kube-apiserver.yml  kube-controller-manager.yml  kube-scheduler.yml
  • 若IP与教学设定不一样的话,请记得修改 YAML 文件。
  • kube-apiserver 中的NodeRestriction 请参考 Using Node Authorization

产生一个用来加密 Etcd 的 Key:

$ head -c 32 /dev/urandom | base64
SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=

注意每台master节点须要用同样的 Key。

在/etc/kubernetes/目录下,创建encryption.yml的加密 YAML 文件:

$ cat <<EOF > /etc/kubernetes/encryption.yml
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
      - secrets
    providers:
      - aescbc:
          keys:
            - name: key1
              secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
      - identity: {}
EOF

Etcd 资料加密可参考这篇 Encrypting data at rest

在/etc/kubernetes/目录下,创建audit-policy.yml的进阶稽核策略 YAML 档:

$ cat <<EOF > /etc/kubernetes/audit-policy.yml
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:- level: Metadata
EOF

Audit Policy 请参考这篇 Auditing

下载haproxy.cfg文件来提供给 HAProxy 容器使用:

$ mkdir -p /etc/haproxy/
$ wget "${CORE_URL}/haproxy.cfg" -O /etc/haproxy/haproxy.cfg

若与本教学 IP 不一样的话,请记得修改设定档。

下载kubelet.service相关文件来管理 kubelet:

$ mkdir -p /etc/systemd/system/kubelet.service.d

$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf

若 cluster dns或domain有改变的话,须要修改10-kubelet.conf。

最后创建 var 存放信息,而后启动 kubelet 服务:

$ mkdir -p /var/lib/kubelet /var/log/kubernetes /var/lib/etcd
$ systemctl enable kubelet.service && systemctl start kubelet.service

完成后会须要一段时间来下载镜像档与启动元件,能够利用该指令来监看:

$ watch netstat -ntlpActive Internet connections (only servers)Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 127.0.0.1:10248         0.0.0.0:*               LISTEN      10344/kubelet
tcp        0      0 127.0.0.1:10251         0.0.0.0:*               LISTEN      11324/kube-schedule
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      11416/haproxy
tcp        0      0 127.0.0.1:10252         0.0.0.0:*               LISTEN      11235/kube-controll
tcp        0      0 0.0.0.0:9090            0.0.0.0:*               LISTEN      11416/haproxy
tcp6       0      0 :::2379                 :::*                    LISTEN      10479/etcd
tcp6       0      0 :::2380                 :::*                    LISTEN      10479/etcd
tcp6       0      0 :::10255                :::*                    LISTEN      10344/kubelet
tcp6       0      0 :::5443                 :::*                    LISTEN      11295/kube-apiserve

若看到以上信息表示服务正常启动,若发生问题能够用docker指令来查看。

验证集群

完成后,在任意一台master节点复制 admin kubeconfig 文件,并经过简单指令验证:

$ cp /etc/kubernetes/admin.conf ~/.kube/config

$ kubectl get cs
NAME                 STATUS    MESSAGE              ERROR
controller-manager   Healthy   ok
scheduler            Healthy   ok
etcd-2               Healthy   {"health": "true"}
etcd-1               Healthy   {"health": "true"}
etcd-0               Healthy   {"health": "true"}

$ kubectl get node
NAME      STATUS     ROLES     AGE       VERSION
k8s-m1    NotReady   master    52s       v1.10.0
k8s-m2    NotReady   master    51s       v1.10.0
k8s-m3    NotReady   master    50s       v1.10.0

$ kubectl -n kube-system get po
NAME                             READY     STATUS    RESTARTS   AGE
etcd-k8s-m1                      1/1       Running   0          7s
etcd-k8s-m2                      1/1       Running   0          57s
haproxy-k8s-m3                   1/1       Running   0          1m...

接着确认服务可以执行 logs 等指令:

$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-scheduler-k8s-m2)

这边会发现出现 403 Forbidden 问题,这是由于 kube-apiserver user 并无 nodes 的资源存取权限,属于正常。

因为上述权限问题,必需创建一个apiserver-to-kubelet-rbac.yml来定义权限,以供对 Nodes 容器执行 logs、exec 等指令。在任意一台master节点执行如下指令:

$ kubectl apply -f "${CORE_URL}/apiserver-to-kubelet-rbac.yml.conf"
clusterrole.rbac.authorization.k8s.io "system:kube-apiserver-to-kubelet" configured
clusterrolebinding.rbac.authorization.k8s.io "system:kube-apiserver" configured

# 测试 logs
$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2...
I0403 02:30:36.375935       1 server.go:555] Version: v1.10.0
I0403 02:30:36.378208       1 server.go:574] starting healthz server on 127.0.0.1:10251

# 设定master节点容许 Taint:
$ kubectl taint nodes node-role.kubernetes.io/master="":NoSchedule --all
node "k8s-m1" tainted
node "k8s-m2" tainted
node "k8s-m3" tainted

Taints and Tolerations

创建 TLS Bootstrapping RBAC 与 Secret

因为本次安装启用了 TLS 认证,所以每一个节点的 kubelet 都必须使用 kube-apiserver 的 CA 的凭证后,才能与 kube-apiserver 进行沟通,而该过程须要手动针对每台节点单独签署凭证是一件繁琐的事情,且一旦节点增长会延伸出管理不易问题; 而 TLS bootstrapping 目标就是解决该问题,经过让 kubelet 先使用一个预约低权限使用者链接到 kube-apiserver,而后在对 kube-apiserver 申请凭证签署,当受权 Token 一致时,Node 节点的 kubelet 凭证将由 kube-apiserver 动态签署提供。具体做法能够参考 TLS Bootstrapping 与 Authenticating with Bootstrap Tokens

首先在k8s-m1创建一个变量来产生BOOTSTRAP_TOKEN,并创建bootstrap-kubelet.conf的 Kubernetes config 档:

$ cd /etc/kubernetes/pki

$ export TOKEN_ID=$(openssl rand 3 -hex)
$ export TOKEN_SECRET=$(openssl rand 8 -hex)
$ export BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET}
$ export KUBE_APISERVER="https://192.16.35.10:6443"

# bootstrap set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap set credentials
$ kubectl config set-credentials tls-bootstrap-token-user \
    --token=${BOOTSTRAP_TOKEN} \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap set context
$ kubectl config set-context tls-bootstrap-token-user@kubernetes \
    --cluster=kubernetes \
    --user=tls-bootstrap-token-user \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap use default context
$ kubectl config use-context tls-bootstrap-token-user@kubernetes \
    --kubeconfig=../bootstrap-kubelet.conf

若想要用手动签署凭证来进行受权的话,能够参考 Certificate

接着在k8s-m1创建 TLS bootstrap secret 来提供自动签证使用:

$ cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Secret
metadata:
  name: bootstrap-token-${TOKEN_ID}
  namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
  token-id: ${TOKEN_ID}
  token-secret: ${TOKEN_SECRET}
  usage-bootstrap-authentication: "true"
  usage-bootstrap-signing: "true"
  auth-extra-groups: system:bootstrappers:default-node-token
EOF

secret "bootstrap-token-65a3a9" created

# 在k8s-m1创建 TLS Bootstrap Autoapprove RBAC:
$ kubectl apply -f "${CORE_URL}/kubelet-bootstrap-rbac.yml.conf"
clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-certificate-rotation" created

Kubernetes Nodes

本部分将说明如何创建与设定 Kubernetes Node 角色,Node 是主要执行容器实例(Pod)的工做节点。

在开始部署前,先在k8-m1将须要用到的文件复制到全部node节点上:

$ cd /etc/kubernetes/pki

$ for NODE in k8s-n1 k8s-n2 k8s-n3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    # Etcd
    for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
      scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
    # Kubernetes
    for FILE in pki/ca.pem pki/ca-key.pem bootstrap-kubelet.conf; do
      scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
  done

部署与设定

在每台node节点下载kubelet.service相关文件来管理 kubelet:

$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/node"
$ mkdir -p /etc/systemd/system/kubelet.service.d

$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf

若 cluster dns或domain有改变的话,须要修改10-kubelet.conf。

最后创建 var 存放信息,而后启动 kubelet 服务:

$ mkdir -p /var/lib/kubelet /var/log/kubernetes
$ systemctl enable kubelet.service && systemctl start kubelet.service

验证集群

完成后,在任意一台master节点并经过简单指令验证:

$ kubectl get csr
NAME                                                   AGE       REQUESTOR                 CONDITION
csr-bvz9l                                              11m       system:node:k8s-m1        Approved,Issued
csr-jwr8k                                              11m       system:node:k8s-m2        Approved,Issued
csr-q867w                                              11m       system:node:k8s-m3        Approved,Issued
node-csr-Y-FGvxZWJqI-8RIK_IrpgdsvjGQVGW0E4UJOuaU8ogk   17s       system:bootstrap:dca3e1   Approved,Issued
node-csr-cnX9T1xp1LdxVDc9QW43W0pYkhEigjwgceRshKuI82c   19s       system:bootstrap:dca3e1   Approved,Issued
node-csr-m7SBA9RAGCnsgYWJB-u2HoB2qLSfiQZeAxWFI2WYN7Y   18s       system:bootstrap:dca3e1   Approved,Issued

$ kubectl get nodes
NAME      STATUS     ROLES     AGE       VERSION
k8s-m1    NotReady   master    12m       v1.10.0
k8s-m2    NotReady   master    11m       v1.10.0
k8s-m3    NotReady   master    11m       v1.10.0
k8s-n1    NotReady   node      32s       v1.10.0
k8s-n2    NotReady   node      31s       v1.10.0
k8s-n3    NotReady   node      29s       v1.10.0

Kubernetes Core Addons 部署

当完成上面全部步骤后,接着须要部署一些插件,其中如Kubernetes DNS与Kubernetes Proxy等这种 Addons 是很是重要的。

Kubernetes Proxy

Kube-proxy 是实现 Service 的关键插件,kube-proxy 会在每台节点上执行,而后监听 API Server 的 Service 与 Endpoint 资源物件的改变,而后来依据变化执行 iptables 来实现网络的转发。这边咱们会须要建议一个 DaemonSet 来执行,而且创建一些须要的 Certificates。

在k8s-m1下载kube-proxy.yml来创建 Kubernetes Proxy Addon:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-proxy.yml.conf"
serviceaccount "kube-proxy" created
clusterrolebinding.rbac.authorization.k8s.io "system:kube-proxy" created
configmap "kube-proxy" created
daemonset.apps "kube-proxy" created

$ kubectl -n kube-system get po -o wide -l k8s-app=kube-proxy
NAME               READY     STATUS    RESTARTS   AGE       IP             NODE
kube-proxy-8j5w8   1/1       Running   0          29s       192.16.35.16   k8s-n3
kube-proxy-c4zvt   1/1       Running   0          29s       192.16.35.11   k8s-m1
kube-proxy-clpl6   1/1       Running   0          29s       192.16.35.12   k8s-m2...

Kubernetes DNS

Kube DNS 是 Kubernetes 集群内部 Pod 之间互相沟通的重要 Addon,它容许 Pod 能够经过 Domain Name 方式来链接 Service,其主要由 Kube DNS 与 Sky DNS 组合而成,经过 Kube DNS 监听 Service 与 Endpoint 变化,来提供给 Sky DNS 信息,已更新解析位址。

在k8s-m1下载kube-proxy.yml来创建 Kubernetes Proxy Addon:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-dns.yml.conf"
serviceaccount "kube-dns" created
service "kube-dns" created
deployment.extensions "kube-dns" created

$ kubectl -n kube-system get po -l k8s-app=kube-dns
NAME                        READY     STATUS    RESTARTS   AGE
kube-dns-654684d656-zq5t8   0/3       Pending   0          1m

这边会发现处于Pending状态,是因为 Kubernetes Pod Network 还未创建完成,所以全部节点会处于NotReady状态,而形成 Pod 没法被排程分配到指定节点上启动,因为为了解决该问题,下节将说明如何创建 Pod Network。

Calico Network 安装与设定

Calico 是一款纯 Layer 3 的资料中心网络方案(不须要 Overlay 网络),Calico 好处是它整合了各类云原平生台,且 Calico 在每个节点利用 Linux Kernel 实现高效的 vRouter 来负责资料的转发,而当资料中心复杂度增长时,能够用 BGP route reflector 来达成。

本次不采用手动方式来创建 Calico 网络,若想了解能够参考 Integration Guide

在k8s-m1下载calico.yaml来创建 Calico Network:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/network/calico.yml.conf"
configmap "calico-config" created
daemonset "calico-node" created
deployment "calico-kube-controllers" created
clusterrolebinding "calico-cni-plugin" created
clusterrole "calico-cni-plugin" created
serviceaccount "calico-cni-plugin" created
clusterrolebinding "calico-kube-controllers" created
clusterrole "calico-kube-controllers" created
serviceaccount "calico-kube-controllers" created

$ kubectl -n kube-system get po -l k8s-app=calico-node -o wide
NAME                READY     STATUS    RESTARTS   AGE       IP             NODE
calico-node-22mbb   2/2       Running   0          1m        192.16.35.12   k8s-m2
calico-node-2qwf5   2/2       Running   0          1m        192.16.35.11   k8s-m1
calico-node-g2sp8   2/2       Running   0          1m        192.16.35.13   k8s-m3
calico-node-hghp4   2/2       Running   0          1m        192.16.35.14   k8s-n1
calico-node-qp6gf   2/2       Running   0          1m        192.16.35.15   k8s-n2
calico-node-zfx4n   2/2       Running   0          1m        192.16.35.16   k8s-n3

这边若节点 IP 与网卡不一样的话,请修改calico.yml文件。

在k8s-m1下载 Calico CLI 来查看 Calico nodes:

$ wget https://github.com/projectcalico/calicoctl/releases/download/v3.1.0/calicoctl -O /usr/local/bin/calicoctl
$ chmod u+x /usr/local/bin/calicoctl
$ cat <<EOF > ~/calico-rcexport ETCD_ENDPOINTS="https://192.16.35.11:2379,https://192.16.35.12:2379,https://192.16.35.13:2379"export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
EOF

$ . ~/calico-rc
$ calicoctl node statusCalico process is running.
IPv4 BGP status+--------------+-------------------+-------+----------+-------------+| PEER ADDRESS |     PEER TYPE     | STATE |  SINCE   |    INFO     |+--------------+-------------------+-------+----------+-------------+| 192.16.35.12 | node-to-node mesh | up    | 04:42:37 | Established || 192.16.35.13 | node-to-node mesh | up    | 04:42:42 | Established || 192.16.35.14 | node-to-node mesh | up    | 04:42:37 | Established || 192.16.35.15 | node-to-node mesh | up    | 04:42:41 | Established || 192.16.35.16 | node-to-node mesh | up    | 04:42:36 | Established |+--------------+-------------------+-------+----------+-------------+...

查看 pending 的 pod 是否已执行:
$ kubectl -n kube-system get po -l k8s-app=kube-dns
kubectl -n kube-system get po -l k8s-app=kube-dns
NAME                        READY     STATUS    RESTARTS   AGE
kube-dns-654684d656-j8xzx   3/3       Running   0          10m

Kubernetes Extra Addons 部署

本节说明如何部署一些官方经常使用的 Addons,如 Dashboard、Heapster 等。

Dashboard

Dashboard 是 Kubernetes 社区官方开发的仪表板,有了仪表板后管理者就可以经过 Web-based 方式来管理 Kubernetes 集群,除了提高管理方便,也让资源视觉化,让人更直觉看见系统信息的呈现结果。

在k8s-m1经过 kubectl 来创建 kubernetes dashboard 便可:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
$ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
NAME                                    READY     STATUS    RESTARTS   AGE
kubernetes-dashboard-7d5dcdb6d9-j492l   1/1       Running   0          12s
NAME                   TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
kubernetes-dashboard   ClusterIP   10.111.22.111   <none>        443/TCP   12s

这边会额外创建一个名称为open-api Cluster Role Binding,这仅做为方便测试时使用,在通常状况下不要开启,否则就会直接被存取全部 API:

$ cat <<EOF | kubectl create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: open-api
  namespace: ""
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: system:anonymous
EOF

注意!管理者能够针对特定使用者来开放 API 存取权限,但这边方便使用直接绑在 cluster-admin cluster role。

完成后,就能够经过浏览器存取 Dashboard

在 1.7 版本之后的 Dashboard 将再也不提供全部权限,所以须要创建一个 service account 来绑定 cluster-admin role:

$ kubectl -n kube-system create sa dashboard
$ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard
$ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}')
$ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}'
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw

复制token,而后贴到 Kubernetes dashboard。注意这边通常来讲要针对不一样 User 开启特定存取权限。

Heapster

Heapster 是 Kubernetes 社区维护的容器集群监控与效能分析工具。Heapster 会从 Kubernetes apiserver 取得全部 Node 信息,而后再经过这些 Node 来取得 kubelet 上的资料,最后再将全部收集到资料送到 Heapster 的后台储存 InfluxDB,最后利用 Grafana 来抓取 InfluxDB 的资料源来进行视觉化。

在k8s-m1经过 kubectl 来创建 kubernetes monitor 便可:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-monitor.yml.conf"
$ kubectl -n kube-system get po,svc
NAME                                           READY     STATUS    RESTARTS   AGE...
po/heapster-74fb5c8cdc-62xzc                   4/4       Running   0          7m
po/influxdb-grafana-55bd7df44-nw4nc            2/2       Running   0          7m

NAME                       TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE...
svc/heapster               ClusterIP   10.100.242.225   <none>        80/TCP              7m
svc/monitoring-grafana     ClusterIP   10.101.106.180   <none>        80/TCP              7m
svc/monitoring-influxdb    ClusterIP   10.109.245.142   <none>        8083/TCP,8086/TCP   7m···

完成后,就能够经过浏览器存取 Grafana Dashboard

Ingress Controller

Ingress是利用 Nginx 或 HAProxy 等负载平衡器来曝露集群内服务的元件,Ingress 主要经过设定 Ingress 规格来定义 Domain Name 映射 Kubernetes 内部 Service,这种方式能够避免掉使用过多的 NodePort 问题。

在k8s-m1经过 kubectl 来创建 Ingress Controller 便可:

$ kubectl create ns ingress-nginx
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/ingress-controller.yml.conf"
$ kubectl -n ingress-nginx get po
NAME                                       READY     STATUS    RESTARTS   AGEdefault-http-backend-5c6d95c48-rzxfb       1/1       Running   0          7m
nginx-ingress-controller-699cdf846-982n4   1/1       Running   0          7m

这里也能够选择 Traefik 的 Ingress Controller。

测试 Ingress 功能

这边先创建一个 Nginx HTTP server Deployment 与 Service:

$ kubectl run nginx-dp --image nginx --port 80
$ kubectl expose deploy nginx-dp --port 80
$ kubectl get po,svc
$ cat <<EOF | kubectl create -f -
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: test-nginx-ingress
  annotations:
    ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: test.nginx.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-dp
          servicePort: 80
EOF

经过 curl 来进行测试:

$ curl 192.16.35.10 -H 'Host: test.nginx.com'<!DOCTYPE html><html><head><title>Welcome to nginx!</title>...

# 测试其余 domain name 是否会回传 404

$ curl 192.16.35.10 -H 'Host: test.nginx.com1'default backend - 404

Helm Tiller Server

Helm 是 Kubernetes Chart 的管理工具,Kubernetes Chart 是一套预先组态的 Kubernetes 资源套件。其中Tiller Server主要负责接收来至 Client 的指令,并经过 kube-apiserver 与 Kubernetes 集群作沟通,根据 Chart 定义的内容,来产生与管理各类对应 API 物件的 Kubernetes 部署文档(又称为 Release)。

首先在k8s-m1安装 Helm tool:

$ wget -qO- https://kubernetes-helm.storage.googleapis.com/helm-v2.8.1-linux-amd64.tar.gz | tar -zx
$ sudo mv linux-amd64/helm /usr/local/bin/

另外在全部node节点安装 socat:

$ sudo apt-get install -y socat

接着初始化 Helm(这边会安装 Tiller Server):

$ kubectl -n kube-system create sa tiller
$ kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller
$ helm init --service-account tiller...Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.Happy Helming!

$ kubectl -n kube-system get po -l app=helm
NAME                             READY     STATUS    RESTARTS   AGE
tiller-deploy-5f789bd9f7-tzss6   1/1       Running   0          29s

$ helm versionClient: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}Server: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}

测试 Helm 功能

这边部署简单 Jenkins 来进行功能测试:

$ helm install --name demo --set Persistence.Enabled=false stable/jenkins
$ kubectl get po,svc  -l app=demo-jenkins
NAME                           READY     STATUS    RESTARTS   AGE
demo-jenkins-7bf4bfcff-q74nt   1/1       Running   0          2m

NAME                 TYPE           CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
demo-jenkins         LoadBalancer   10.103.15.129    <pending>     8080:31161/TCP   2m
demo-jenkins-agent   ClusterIP      10.103.160.126   <none>        50000/TCP        2m

# 取得 admin 帐号的密码

$ printf $(kubectl get secret --namespace default demo-jenkins -o jsonpath="{.data.jenkins-admin-password}" | base64 --decode);echo
r6y9FMuF2u

完成后,就能够经过浏览器存取 Jenkins Web

测试完成后,便可删除:

$ helm ls
NAME    REVISION    UPDATED                     STATUS      CHART             NAMESPACE
demo    1           Tue Apr 10 07:29:51 2018    DEPLOYED    jenkins-0.14.4    default

$ helm delete demo --purge
release "demo" deleted

更多 Helm Apps 能够到 Kubeapps Hub 寻找。

测试集群

SSH 进入k8s-m1节点,而后关闭该节点:

$ sudo poweroff

接着进入到k8s-m2节点,经过 kubectl 来检查集群是否可以正常执行:

# 先检查 etcd 状态,能够发现 etcd-0 由于关机而中断
$ kubectl get cs
NAME                 STATUS      MESSAGE              ERROR
scheduler            Healthy     ok
controller-manager   Healthy     ok
etcd-1               Healthy     {"health": "true"}
etcd-2               Healthy     {"health": "true"}
etcd-0               Unhealthy   Get https://192.16.35.11:2379/health: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

# 测试是否能够创建 Pod
$ kubectl run nginx --image nginx --restart=Never --port 80
$ kubectl get po
NAME      READY     STATUS    RESTARTS   AGE
nginx     1/1       Running   0          22s

更多参考:

相关文章
相关标签/搜索