最近,有部分用户飘了……node
以为Rainbond提供的既简洁、又易用、并且生产就绪的Kubernets体验不过瘾……linux
想要挑战一下Kubernetes全手动部署……nginx
并在凌晨一点拨通了客服小哥的电话……git
所以本着不重复造轮子而且关爱客服小哥身心健康的主张,咱们搬来了Kairen的精彩教程——github
Kubernetes官方提供了多种安装方式Picking the right solution,本文将以全手动安装方式
来部署Kubernetes v1.8.x版本,学习和了解Kubernetes的构建流程。web
版本明细:docker
系统:ubuntu 16.x
或 centos 7.x
节点:json
master为主要控制节点和部署节点,node为应用运行节点
全部操做均为root
安装前需确认如下事项:bootstrap
$ systemctl stop firewalld && systemctl disable firewalld $ setenforce 0 $ vim /etc/selinux/config SELINUX=disabled
/etc/host
解析到全部主机... 172.16.35.10 node1 172.16.35.11 node2 172.16.35.12 master1
全部节点都须要安装dockerubuntu
$ curl -fsSL "https://get.docker.com/" | sh
注意:centos安装docker完成后须要执行:
$ systemctl enable docker && systemctl start docker
编辑/lib/systemd/system/docker.service
,在ExecStart=..
加入:
ExecStartPost=/sbin/iptables -A FORWARD -s 0.0.0.0/0 -j ACCEPT
完成后重启docker服务:
$ systemctl daemon-reload && systemctl restart docker
全部节点都须要设定/etc/sysctl.d/k8s.conf
系统参数
$ cat <<EOF > /etc/sysctl.d/k8s.conf net.ipv4.ip_forward = 1 net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 EOF $ sysctl -p /etc/sysctl.d/k8s.conf
在master1安装CFSSL
工具,用来创建TLS certificates
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2" $ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl $ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson $ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson
安装Kubernetes以前,咱们须要完成一些必要的系统配置,高可用共享配置和服务发现存储Etcd即是其中的重要一环,节点会从Etcd中获取所需数据。
这里须要生成client和server各组件certificate,代替kubernetes admin user生成client证书。
首先在master1
创建/etc/etcd/ssl
目录,然后进入目录进行如下操做:
$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl $ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
下载ca-config.json
和etcd-ca-csr.json
:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json" $ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca $ ls etcd-ca*.pem etcd-ca-key.pem etcd-ca.pem
下载etcd-csr.json
并生成Etcd certificate证书:
$ wget "${PKI_URL}/etcd-csr.json" $ cfssl gencert \ -ca=etcd-ca.pem \ -ca-key=etcd-ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ etcd-csr.json | cfssljson -bare etcd $ ls etcd*.pem etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem
若是节点IP不一样,须要修改
etcd-csr.json
的hosts
完成后删除没必要要的文件:
$ rm -rf *.json
并确认/etc/etcd/ssl
包含:
$ ls /etc/etcd/ssl etcd-ca.csr etcd-ca-key.pem etcd-ca.pem etcd.csr etcd-key.pem etcd.pem
首先在master1
节点下载Etcd,解压到/opt
安装:
$ export ETCD_URL="https://github.com/coreos/etcd/releases/download" $ cd && wget -qO- --show-progress "${ETCD_URL}/v3.2.9/etcd-v3.2.9-linux-amd64.tar.gz" | tar -zx $ mv etcd-v3.2.9-linux-amd64/etcd* /usr/local/bin/ && rm -rf etcd-v3.2.9-linux-amd64
完成后新建Etcd Group和User,并设定Etcd目录:
$ groupadd etcd && useradd -c "Etcd user" -g etcd -s /sbin/nologin -r etcd
下载etcd相关配置,咱们未来管理Etcd:
$ export ETCD_CONF_URL="https://kairen.github.io/files/manual-v1.8/master" $ wget "${ETCD_CONF_URL}/etcd.conf" -O /etc/etcd/etcd.conf $ wget "${ETCD_CONF_URL}/etcd.service" -O /lib/systemd/system/etcd.service
若是没用本文准备部分的IP,请用本身的IP代替
172.16.35.12
创建var 存放数据,而后启动Etcd服务:
$ mkdir -p /var/lib/etcd && chown etcd:etcd -R /var/lib/etcd /etc/etcd $ systemctl enable etcd.service && systemctl start etcd.service
经过如下命令验证:
$ export CA="/etc/etcd/ssl" $ ETCDCTL_API=3 etcdctl \ --cacert=${CA}/etcd-ca.pem \ --cert=${CA}/etcd.pem \ --key=${CA}/etcd-key.pem \ --endpoints="https://172.16.35.12:2379" \ endpoint health # output https://172.16.35.12:2379 is healthy: successfully committed proposal: took = 641.36µs
Master是Kubernetes的大总管,经过apiserver
、Controller manager
以及Scheduler
管理全部节点。
本部分将下载Kubernetes并安装到master1节点上,而后生成相关TLS certificates和CA,供集群组件使用。
# Download Kubernetes $ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.6/bin/linux/amd64" $ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet $ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl $ chmod +x /usr/local/bin/kubelet /usr/local/bin/kubectl # Download CNI $ mkdir -p /opt/cni/bin && cd /opt/cni/bin $ export CNI_URL="https://github.com/containernetworking/plugins/releases/download" $ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
与Etcd部分原理同样,操做也截然不同,首先在master1
创建pki
目录,并进入目录执行:
$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki $ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki" $ export KUBE_APISERVER="https://172.16.35.12:6443"
下载ca-config.json
和etcd-ca-csr.json
:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json" $ cfssl gencert -initca ca-csr.json | cfssljson -bare ca $ ls ca*.pem ca-key.pem ca.pem
下载apiserver-csr.json
,生成kube-apiserver certificate
证书:
$ wget "${PKI_URL}/apiserver-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -hostname=10.96.0.1,172.16.35.12,127.0.0.1,kubernetes.default \ -profile=kubernetes \ apiserver-csr.json | cfssljson -bare apiserver $ ls apiserver*.pem apiserver-key.pem apiserver.pem
若是节点IP不一样,须要修改
-hostname
下载front-proxy-ca-csr.json
,生成Front proxy CA,Front proxy主要用在API aggregator上:
$ wget "${PKI_URL}/front-proxy-ca-csr.json" $ cfssl gencert \ -initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca $ ls front-proxy-ca*.pem front-proxy-ca-key.pem front-proxy-ca.pem
下载front-proxy-client-csr.json
,生成front-proxy-client证书:
$ wget "${PKI_URL}/front-proxy-client-csr.json" $ cfssl gencert \ -ca=front-proxy-ca.pem \ -ca-key=front-proxy-ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ front-proxy-client-csr.json | cfssljson -bare front-proxy-client $ ls front-proxy-client*.pem front-proxy-client-key.pem front-proxy-client.pem
手工方式生成CA很是麻烦,只适合少许机器,每次签证时都须要绑定Node IP,随着机器增长会带来不少的不便,所以这里使用TLS Bootstrapping的方式来进行受权,由apiserver自动为符合条件的Node发送证书受权加入集群。
作法是在kubelet启动时,向kuber-apiserver传送TLS Bootstrapping请求,而kube-apiserver验证kubelet请求的token是否与设定的同样,若是同样则自动生成Kuberlet证书和密钥。具体做法能够参考TLS bootstrapping。
首先生成BOOTSTRAP_TOKEN
,并创建bootstrap.conf
的kubeconfig:
$ export BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ') $ cat <<EOF > /etc/kubernetes/token.csv ${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap" EOF # bootstrap set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../bootstrap.conf # bootstrap set-credentials $ kubectl config set-credentials kubelet-bootstrap \ --token=${BOOTSTRAP_TOKEN} \ --kubeconfig=../bootstrap.conf # bootstrap set-context $ kubectl config set-context default \ --cluster=kubernetes \ --user=kubelet-bootstrap \ --kubeconfig=../bootstrap.conf # bootstrap set default context $ kubectl config use-context default --kubeconfig=../bootstrap.conf
若是想用CA的方式来认证,能够参考 Kubelet certificate
下载admin-csr.json
,并生成admin certificate
证书:
$ wget "${PKI_URL}/admin-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ admin-csr.json | cfssljson -bare admin $ ls admin*.pem admin-key.pem admin.pem
而后执行一下命令生成名为admin.conf
的kubeconfig:
# admin set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../admin.conf # admin set-credentials $ kubectl config set-credentials kubernetes-admin \ --client-certificate=admin.pem \ --client-key=admin-key.pem \ --embed-certs=true \ --kubeconfig=../admin.conf # admin set-context $ kubectl config set-context kubernetes-admin@kubernetes \ --cluster=kubernetes \ --user=kubernetes-admin \ --kubeconfig=../admin.conf # admin set default context $ kubectl config use-context kubernetes-admin@kubernetes \ --kubeconfig=../admin.conf
下载manager-csr.json
,并生成kube-controller-manager certificate
证书:
$ wget "${PKI_URL}/manager-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ manager-csr.json | cfssljson -bare controller-manager $ ls controller-manager*.pem
若是节点IP不一样,须要修改
manager-csr.json
的hosts
而后执行命令生成名为controller-manager.conf
的kubeconfig:
# controller-manager set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../controller-manager.conf # controller-manager set-credentials $ kubectl config set-credentials system:kube-controller-manager \ --client-certificate=controller-manager.pem \ --client-key=controller-manager-key.pem \ --embed-certs=true \ --kubeconfig=../controller-manager.conf # controller-manager set-context $ kubectl config set-context system:kube-controller-manager@kubernetes \ --cluster=kubernetes \ --user=system:kube-controller-manager \ --kubeconfig=../controller-manager.conf # controller-manager set default context $ kubectl config use-context system:kube-controller-manager@kubernetes \ --kubeconfig=../controller-manager.conf
下载scheduler-csr.json
,生成kube-scheduler certificate证书:
$ wget "${PKI_URL}/scheduler-csr.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ scheduler-csr.json | cfssljson -bare scheduler $ ls scheduler*.pem scheduler-key.pem scheduler.pem
若是节点IP不一样,须要修改
scheduler-csr.json
的hosts
而后执行一下命令生成名为scheduler.conf
的kubeconfig:
# scheduler set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../scheduler.conf # scheduler set-credentials $ kubectl config set-credentials system:kube-scheduler \ --client-certificate=scheduler.pem \ --client-key=scheduler-key.pem \ --embed-certs=true \ --kubeconfig=../scheduler.conf # scheduler set-context $ kubectl config set-context system:kube-scheduler@kubernetes \ --cluster=kubernetes \ --user=system:kube-scheduler \ --kubeconfig=../scheduler.conf # scheduler set default context $ kubectl config use-context system:kube-scheduler@kubernetes \ --kubeconfig=../scheduler.conf
下载kubelet-csr.json
,并生成master node certificate证书:
$ wget "${PKI_URL}/kubelet-csr.json" $ sed -i 's/$NODE/master1/g' kubelet-csr.json $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -hostname=master1,172.16.35.12 \ -profile=kubernetes \ kubelet-csr.json | cfssljson -bare kubelet $ ls kubelet*.pem kubelet-key.pem kubelet.pem
$NODE
须要随节点名称不一样而改变
而后执行一下命令生成名为kubelet.conf
的kubeconfig:
# kubelet set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=../kubelet.conf # kubelet set-credentials $ kubectl config set-credentials system:node:master1 \ --client-certificate=kubelet.pem \ --client-key=kubelet-key.pem \ --embed-certs=true \ --kubeconfig=../kubelet.conf # kubelet set-context $ kubectl config set-context system:node:master1@kubernetes \ --cluster=kubernetes \ --user=system:node:master1 \ --kubeconfig=../kubelet.conf # kubelet set default context $ kubectl config use-context system:node:master1@kubernetes \ --kubeconfig=../kubelet.conf
Service account不须要CA认证,也就不须要CA来作Service account key的检查,这里咱们创建一组private和public的密钥供Service account key使用:
$ openssl genrsa -out sa.key 2048 $ openssl rsa -in sa.key -pubout -out sa.pub $ ls sa.* sa.key sa.pub
完成后删除没必要要文件:
$ rm -rf *.json *.csr
确认/etc/kubernetes
和/etc/kubernetes/pki
包含如下文件:
$ ls /etc/kubernetes/ admin.conf bootstrap.conf controller-manager.conf kubelet.conf pki scheduler.conf token.csv $ ls /etc/kubernetes/pki admin-key.pem apiserver-key.pem ca-key.pem controller-manager-key.pem front-proxy-ca-key.pem front-proxy-client-key.pem kubelet-key.pem sa.key scheduler-key.pem admin.pem apiserver.pem ca.pem controller-manager.pem front-proxy-ca.pem front-proxy-client.pem kubelet.pem sa.pub scheduler.pem
下载Kubernetes核心组件Yaml文件,这里咱们利用Kubernetes Statics Pod来创建Master核心组件,所以下载全部Static Pod文件到etc/kubernetes/manifests
目录“
$ export CORE_URL="https://kairen.github.io/files/manual-v1.8/master" $ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests $ for FILE in apiserver manager scheduler; do wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml done
一样的,若是IP与本文IP准备不一样的话,须要修改apiserver.yml
、manager.yml
、`
scheduler.yml`apiserver中的
NodeRestriction
请参考Using Node Authorization
生成一个用来加密Etcd的key
$ head -c 32 /dev/urandom | base64 SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
在/etc/kubernetes/
目录创建encryption.yml
的加密YAML文件:
$ cat <<EOF > /etc/kubernetes/encryption.yml kind: EncryptionConfig apiVersion: v1 resources: - resources: - secrets providers: - aescbc: keys: - name: key1 secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ= - identity: {} EOF
Etcd加密可参考 Encrypting data at rest
在/etc/kubernetes/
目录创建audit-policy.yml
的auditing policay YAML文件:
$ cat <<EOF > /etc/kubernetes/audit-policy.yml apiVersion: audit.k8s.io/v1beta1 kind: Policy rules: - level: Metadata EOF
audit policy请参考 Audit
下载kubelet.service
相关文件来管理kubelet:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/master" $ mkdir -p /etc/systemd/system/kubelet.service.d $ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service $ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若cluster-dns
或cluster-domain
有变更,须要修改10-kubelet.conf
最后创建var并启动kubelet服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes $ systemctl enable kubelet.service && systemctl start kubelet.service
完成后须要一段时间来下载镜像文件并启动组件:
$ watch netstat -ntlp tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 23012/kubelet tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 22305/kube-schedule tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 22529/kube-controll tcp6 0 0 :::6443 :::* LISTEN 22956/kube-apiserve
看到上述信息即代表服务启动正常,若是出现问题可经过docker cli查看
完成后,复制admin kubeconfig并经过如下命令验证:
$ cp /etc/kubernetes/admin.conf ~/.kube/config $ kubectl get cs NAME STATUS MESSAGE ERROR etcd-0 Healthy {"health": "true"} scheduler Healthy ok controller-manager Healthy ok $ kubectl get node NAME STATUS ROLES AGE VERSION master1 NotReady master 1m v1.8.6 $ kubectl -n kube-system get po NAME READY STATUS RESTARTS AGE kube-apiserver-master1 1/1 Running 0 4m kube-controller-manager-master1 1/1 Running 0 4m kube-scheduler-master1 1/1 Running 0 4m
确认服务可以执行logs等命令:
$ kubectl -n kube-system logs -f kube-scheduler-master1 Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-apiserver-master1)
出现403 Forbidden问题代表
kube-apiserver user
并无nodes的权限
因为上述权限问题,咱们须要创建一个apiserver-to-kubelet-rbac.yml
来定义权限,以供咱们执行logs、exec等命令:
$ cd /etc/kubernetes/ $ export URL="https://kairen.github.io/files/manual-v1.8/master" $ wget "${URL}/apiserver-to-kubelet-rbac.yml.conf" -O apiserver-to-kubelet-rbac.yml $ kubectl apply -f apiserver-to-kubelet-rbac.yml # 測試 logs $ kubectl -n kube-system logs -f kube-scheduler-master1 ... I1031 03:22:42.527697 1 leaderelection.go:184] successfully acquired lease kube-system/kube-scheduler
Node运行容器实例的节点,即工做节点。本部分咱们会下载Kubernetes binary并创建node 的certificate来提供给节点注册认证用。Kubernetes使用Node Authorizer来提供Authorization mode,这种受权模式会替Kubelet生成API request。
开始前,咱们先在master1
将须要的ca和cert复制到Node节点上:
$ for NODE in node1 node2; do ssh ${NODE} "mkdir -p /etc/kubernetes/pki/" ssh ${NODE} "mkdir -p /etc/etcd/ssl" # Etcd ca and cert for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE} done # Kubernetes ca and cert for FILE in pki/ca.pem pki/ca-key.pem bootstrap.conf; do scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE} done done
首先获取全部须要执行的文件:
# Download Kubernetes $ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.6/bin/linux/amd64" $ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet $ chmod +x /usr/local/bin/kubelet # Download CNI $ mkdir -p /opt/cni/bin && cd /opt/cni/bin $ export CNI_URL="https://github.com/containernetworking/plugins/releases/download" $ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
下载Kubernetes相关文件,包括drop-in file、systemd service等:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/node" $ mkdir -p /etc/systemd/system/kubelet.service.d $ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service $ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
若是cluster-dns
或cluster-domain
有改变的话,须要修改10-kubelet.conf
而后在全部node创建var,并启动kubelet服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes /etc/kubernetes/manifests $ systemctl enable kubelet.service && systemctl start kubelet.service
重复完成全部节点后,在master1节点创建ClusterRoleBinding(由于咱们采用的是TLS Bootstrapping):
$ kubectl create clusterrolebinding kubelet-bootstrap \ --clusterrole=system:node-bootstrapper \ --user=kubelet-bootstrap
在master进行验证,咱们能够看到节点处于pending:
$ kubectl get csr NAME AGE REQUESTOR CONDITION node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 2s kubelet-bootstrap Pending node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 2s kubelet-bootstrap Pending
经过kubectl,容许节点加入集群:
$ kubectl get csr | awk '/Pending/ {print $1}' | xargs kubectl certificate approve certificatesigningrequest "node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE" approved certificatesigningrequest "node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE" approved $ kubectl get csr NAME AGE REQUESTOR CONDITION node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 30s kubelet-bootstrap Approved,Issued node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 30s kubelet-bootstrap Approved,Issued $ kubectl get no NAME STATUS ROLES AGE VERSION master1 NotReady master 21m v1.8.6 node1 NotReady node 8s v1.8.6 node2 NotReady node 8s v1.8.6
完成以上全部步骤,咱们还须要安装一些插件,好比kube-dns、kube-proxy等等。
Kube-proxy是实现Service的关键组件,kube-proxy会在每一个节点上执行,而后监听API Server的Service和Endpoint变化,并根据变化执行iptables实现网络转发。
这里咱们须要DaemonSet来执行,并须要生成一些certificate。
首先在master1
下载kube-proxy-csr.json
,并生成kube-proxy certificate证书:
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki" $ cd /etc/kubernetes/pki $ wget "${PKI_URL}/kube-proxy-csr.json" "${PKI_URL}/ca-config.json" $ cfssl gencert \ -ca=ca.pem \ -ca-key=ca-key.pem \ -config=ca-config.json \ -profile=kubernetes \ kube-proxy-csr.json | cfssljson -bare kube-proxy $ ls kube-proxy*.pem kube-proxy-key.pem kube-proxy.pem
而后经过如下命令生成名为`kube-proxy.conf·的kubeconfig:
# kube-proxy set-cluster $ kubectl config set-cluster kubernetes \ --certificate-authority=ca.pem \ --embed-certs=true \ --server="https://172.16.35.12:6443" \ --kubeconfig=../kube-proxy.conf # kube-proxy set-credentials $ kubectl config set-credentials system:kube-proxy \ --client-key=kube-proxy-key.pem \ --client-certificate=kube-proxy.pem \ --embed-certs=true \ --kubeconfig=../kube-proxy.conf # kube-proxy set-context $ kubectl config set-context system:kube-proxy@kubernetes \ --cluster=kubernetes \ --user=system:kube-proxy \ --kubeconfig=../kube-proxy.conf # kube-proxy set default context $ kubectl config use-context system:kube-proxy@kubernetes \ --kubeconfig=../kube-proxy.conf
删除没必要要的文件:
$ rm -rf *.json
确认/etc/kubernetes
有如下文件:
$ ls /etc/kubernetes/ admin.conf bootstrap.conf encryption.yml kube-proxy.conf pki token.csv audit-policy.yml controller-manager.conf kubelet.conf manifests scheduler.conf
在master1
上将kube-proxy相关文件复制到Node节点上:
$ for NODE in node1 node2; do echo "--- $NODE ---" for FILE in pki/kube-proxy.pem pki/kube-proxy-key.pem kube-proxy.conf; do scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE} done done
完成后,在master1
经过kubectl创建kube-proxy daemon:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon" $ mkdir -p /etc/kubernetes/addons && cd /etc/kubernetes/addons $ wget "${ADDON_URL}/kube-proxy.yml.conf" -O kube-proxy.yml $ kubectl apply -f kube-proxy.yml $ kubectl -n kube-system get po -l k8s-app=kube-proxy NAME READY STATUS RESTARTS AGE kube-proxy-bpp7q 1/1 Running 0 47s kube-proxy-cztvh 1/1 Running 0 47s kube-proxy-q7mm4 1/1 Running 0 47s
Kube DNS是Kubernetes集群内部Pod之间通讯的重要插件,容许Pod经过Domain Name连接Service,主要由Kube DNS与Sky DNS组合而成,经过Kube DNS监听Service与Endpoint变化,来提供给Sky DNS信息以更新解析位址。
安装只须要在master1
经过kubectl创建kube-dns deployment便可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon" $ wget "${ADDON_URL}/kube-dns.yml.conf" -O kube-dns.yml $ kubectl apply -f kube-dns.yml $ kubectl -n kube-system get po -l k8s-app=kube-dns NAME READY STATUS RESTARTS AGE kube-dns-6cb549f55f-h4zr5 0/3 Pending 0 40s
Calico是一款纯3层协议(不须要Overlay 网路),已与各类云原平生台有良好的整合,在每一个节点节点利用Linux Kernel实现高效的vRouter来负责数据转发,而当数据中心复杂度增长时,能够用BGP route reflector来达成。
首先在master1
经过kubectl创建Calico policy controller:
$ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network" $ wget "${CALICO_CONF_URL}/calico-controller.yml.conf" -O calico-controller.yml $ kubectl apply -f calico-controller.yml $ kubectl -n kube-system get po -l k8s-app=calico-policy NAME READY STATUS RESTARTS AGE calico-policy-controller-5ff8b4549d-tctmm 0/1 Pending 0 5s
若是节点IP不一样,须要修改calico-controller.yml的ETCD_ENDPOINTS
在`master1·下载Calico CLI工具:
$ wget https://github.com/projectcalico/calicoctl/releases/download/v1.6.1/calicoctl $ chmod +x calicoctl && mv calicoctl /usr/local/bin/
而后在全部节点下载Calico,并执行如下命令:
$ export CALICO_URL="https://github.com/projectcalico/cni-plugin/releases/download/v1.11.0" $ wget -N -P /opt/cni/bin ${CALICO_URL}/calico $ wget -N -P /opt/cni/bin ${CALICO_URL}/calico-ipam $ chmod +x /opt/cni/bin/calico /opt/cni/bin/calico-ipam
接着在全部节点下载CNI plugins以及calico-node.service:
$ mkdir -p /etc/cni/net.d $ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network" $ wget "${CALICO_CONF_URL}/10-calico.conf" -O /etc/cni/net.d/10-calico.conf $ wget "${CALICO_CONF_URL}/calico-node.service" -O /lib/systemd/system/calico-node.service
若是节点IP不一样,须要修改10-calico.conf的etcd_endpoints若是部署机器是虚拟机,须要修改calico-node.service,并在IP_AUTODETECTION_METHOD (包含IP6)部分指定绑定的网卡,以避免预设绑定到NAT网路上
以后在全部节点启动Calico-node:
$ systemctl enable calico-node.service && systemctl start calico-node.service
在master1
查看Calico nodes:
$ cat <<EOF > ~/calico-rc export ETCD_ENDPOINTS="https://172.16.35.12:2379" export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem" export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem" export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem" EOF $ . ~/calico-rc $ calicoctl get node -o wide NAME ASN IPV4 IPV6 master1 (64512) 172.16.35.12/24 node1 (64512) 172.16.35.10/24 node2 (64512) 172.16.35.11/24
查看pending的pod是否已执行:
$ kubectl -n kube-system get po NAME READY STATUS RESTARTS AGE calico-policy-controller-5ff8b4549d-tctmm 1/1 Running 0 4m kube-apiserver-master1 1/1 Running 0 20m kube-controller-manager-master1 1/1 Running 0 20m kube-dns-6cb549f55f-h4zr5 3/3 Running 0 5m kube-proxy-fnrkb 1/1 Running 0 6m kube-proxy-l72bq 1/1 Running 0 6m kube-proxy-m6rfw 1/1 Running 0 6m kube-scheduler-master1 1/1 Running 0 20m
省事的作法是用Standard Hosted方式安装。
本部分说明如何部署官方经常使用的addons,例如dashboard、heapster等。
Dashboard是Kubernetes官方开发的仪表板,让咱们以能够i 经过web-based方式管理kubernetes集群。
在master1
经过kubectl创建kubernetes dashboard便可:
$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml $ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard NAME READY STATUS RESTARTS AGE po/kubernetes-dashboard-747c4f7cf-md5m8 1/1 Running 0 56s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE svc/kubernetes-dashboard ClusterIP 10.98.120.209 <none> 443/TCP 56s
这边会额外创建一个名称为open-api
的Cluster Role Binding,放拜年测试使用,通常状况下不开启(开启会存取全部API)。
$ cat <<EOF | kubectl create -f - apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: open-api namespace: "" roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - apiGroup: rbac.authorization.k8s.io kind: User name: system:anonymous EOF
管理者能够针对特定使用者来开放API存取权限,这里咱们为了方便直接绑在cluster-admin cluster role。
1.7版本后的Dashboard再也不提供全部权限,须要创建一个service account来绑定cluster-admin role:
$ kubectl -n kube-system create sa dashboard $ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard $ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}') $ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}' eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw
复制token,而后贴到Kubernetes dashboard
Heapster是Kubernetes社区维护的容器集群监控和分析工具。Heapster会从Kubernetes apiserver取得全部Node数据,而后再经过Node获取kubelet上的数据,最后再将全部收集到数据送到Heapster后台储存InfluxDB,最后利用Grafana抓取InfluxDB数据源来进行展现。
在master1
经过kubectl来创建kubernetes monitor便可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon" $ wget ${ADDON_URL}/kube-monitor.yml.conf -O kube-monitor.yml $ kubectl apply -f kube-monitor.yml $ kubectl -n kube-system get po,svc NAME READY STATUS RESTARTS AGE ... po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE ... svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m ···
Kubernetes能够选择使用指令直接创建应用和服务,或者咱们能够写YAML、JSON文件来配置,以下所示:
$ kubectl run nginx --image=nginx --port=80 $ kubectl expose deploy nginx --port=80 --type=LoadBalancer --external-ip=172.16.35.12 $ kubectl get svc,po NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1h svc/nginx LoadBalancer 10.97.121.243 172.16.35.12 80:30344/TCP 22s NAME READY STATUS RESTARTS AGE po/nginx-7cbc4b4d9c-7796l 1/1 Running 0 28s 192.160.57.181 ,172.16.35.12 80:32054/TCP 21s
这里type能够选择NodePort和LoadBalancer在本地裸机部署,二者差别在于NodePort只映射Host port到Container port,而LoadBalancer则继承NodePort额外映射Host target port到Container port
最后,咱们能够经过如下方式来扩展服务数量:
$ kubectl scale deploy nginx --replicas=2 $ kubectl get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE nginx-158599303-0h9lr 1/1 Running 0 25s 10.244.100.5 node2 nginx-158599303-k7cbt 1/1 Running 0 1m 10.244.24.3 node1
相关阅读
技术
Kubernetes Autoscaling是如何工做的? 2018/05/07
技术
用户评测 | Docker管理面板系列——云帮(Rainbond 出色的k8s管理面板) 2018/05/09
技术
如何把应用转移到Kubernetes 2018/05/04
技术
Kubernetes伸缩到2500个节点中遇到的问题和解决方法 2018/04/24
技术
kubernetes容器网络接口(CNI) midonet网络插件的设计与实现 2017/05/04
技术
在生产环境使用Kuberntes一年后,咱们总结了这些经验和教训 2017/02/23
技术
关于K8s容器集群日志收集的总结 2016/12/15
技术
Kubernetes集群中的高性能网络策略 2016/12/08
行业
开了香槟的Kubernetes并不打算放慢成功的脚步 2018/05/09
行业
上手kubernetes以前,你应该知道这6件事 2018/05/03
行业
为何说Kubernetes是云服务的将来? 2016/10/21