本文基于openjdk11及hotspot
java
从Java8开始,JVM中的永久代被替换为了metaspace,本文将根据JVM源码对metaspace的初始化、分配内存、释放内存三个主要过程进行解析。node
在metaspace中有以下一些概念,metaspace、classLoaderMetaspace、virtualSpace、metachunk、chunkManager、spaceManager、metablock。首先来看看各个数据结构中的内容,bootstrap
// hotspot/share/memory/metaspace.hpp
class Metaspace : public AllStatic {
static metaspace::VirtualSpaceList* _space_list;
static metaspace::VirtualSpaceList* _class_space_list;
static metaspace::ChunkManager* _chunk_manager_metadata;
static metaspace::ChunkManager* _chunk_manager_class;
}
复制代码
Metaspace是一个只包含静态属性和静态方法的类,看上去更像是一个工具类。在里面重要包含了VirtualSpaceList和ChunkManager,不难看出VirtualSpaceList及ChunkManager是全局共享的。数组
这二者分别对应了一片内存区域,从名称中能够看出class_space_list是用来存储java中class的数据的。但事实上,不彻底正确,只有当压缩指针生效的时候,class_space_list才会存在,不然class数据也一样会存储在space_list中。也就是说其实JVM的metaspace区域其实分为两块——Class区域和NonClass区域。bash
同理,chunk_manager_metadata对应了NonClass,chunk_manager_class对应了Class。数据结构
在Java中,每一个ClassLoader实例(包括bootstrapClassLoader)都会在metaspace中拥有一块独立的区域,叫作classLoaderMetaspace。classLoaderMetaspace的数据结构以下:app
class ClassLoaderMetaspace : public CHeapObj<mtClass> {
metaspace::SpaceManager* _vsm;
metaspace::SpaceManager* _class_vsm;
}
复制代码
每一个ClassLoaderMetaspace实例都会有一个spaceManager(可能还有一个classSpaceManager),用来处理ClassLoaderMetaspace的内存分配。工具
classLoaderMetaspace有些多种类型,分别对应了不一样的ClassLoaderpost
名称 | 对应ClassLoader |
---|---|
StandardMetaspace | 普通ClassLoader |
BootMetaspace | BootstrapClassLoader |
AnonymousMetaspace | 匿名ClassLoader |
ReflectionMetaspace | 反射ClassLoader |
不一样类型的metaspace之间区别不大,主要在于他们建立的chunk大小的区别。ui
virtualSpace组成了为metaspace分配的空间,以链表形式共享给ClassLoaderMetaspace使用。数据结构以下:
class VirtualSpace {
// Reserved area
char* _low_boundary;
char* _high_boundary;
// Committed area
char* _low;
char* _high;
// MPSS Support
char* _lower_high;
char* _middle_high;
char* _upper_high;
char* _lower_high_boundary;
char* _middle_high_boundary;
char* _upper_high_boundary;
}
复制代码
在virtualSpace中划分为了上中下三个区域,以下图所示
----------------- upper_high_boundary / high_boundary
| unused | |
|--------| 上 |- upper_high
| used | |
----------------- middle_high_boundary
| unused | |
|--------| 中 |- middle_high
| used | |
----------------- lower_high_boundary
| unused | |
|--------| 下 |- lower_high
| used | |
----------------- low_boundary
复制代码
这三块区域的区别,本文不予细究。
metachunk是ClassLoaderMetaspace从VirtualSpace区域分配出来的内存,每一个ClassLoaderMetaspace都会经过spaceManager持有一个metachunk列表,代表它全部持有的metaspace内存,一样的该classLoader的全部内存申请也所有是在chunk中进行。
在JVM中chunk从小到大分为了四种类型,以及其对应的chunk大小以下表,
chunk类型 | Class(单位:字) | NonClass(单位:字) |
---|---|---|
specialized | 128 | 128 |
small | 256 | 512 |
medium | 4K | 8K |
humongous | 无固定大小 | 无固定大小 |
chunkManager用来那些已经释放了的chunk,用以重复使用,数据结构以下:
class ChunkManager : public CHeapObj<mtInternal> {
ChunkList _free_chunks[NumberOfFreeLists];
ChunkTreeDictionary _humongous_dictionary;
}
复制代码
其中free_chunks[]
用来存储special、small、medium三种类型的chunk,而humongous_dictionary
用来存储humongous类型的chunk。前面三种是固定大小,所以直接使用数组存储,而humongous是无固定大小的,所以使用排序二叉树的形式存储。
每一个classLoaderMetaspace都对应一个NonClassSpaceManager和一个ClassSpaceManager,SpaceManager中存储了当前classLoaderMetaspace所使用的chunk的信息以及释放后用于从新使用的metablock列表。同时classLoaderMetaspace的内存分配最终也是由spaceManager来处理的。主要数据结构以下:
class SpaceManager : public CHeapObj<mtClass> {
Metachunk* _chunk_list;
Metachunk* _current_chunk;
BlockFreelist* _block_freelists;
}
复制代码
metablock则是由metachunk中分配出来用于最终使用的内存。在spaceManager的BlockFreeList中存储了那些释放后可再次使用的block。
JVM metaspace初始化分为了metaspace和classLoaderMetaspace的初始化。咱们依次来看这二者的初始化,
metaspace的初始化分为三步,先是Arguments::apply_ergo()时调用Metaspace::ergo_initialize(),接着在universe_init()时调用Metaspace::global_initialize(),最后调用Metaspace::post_initialize()。这三步都是在JVM初始化的过程当中执行。咱们依次来看这三步初始化过程,
void Metaspace::ergo_initialize() {
if (DumpSharedSpaces) {
FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
}
size_t page_size = os::vm_page_size();
if (UseLargePages && UseLargePagesInMetaspace) {
page_size = os::large_page_size();
}
_commit_alignment = page_size;
_reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
MaxMetaspaceSize = align_down_bounded(MaxMetaspaceSize, _reserve_alignment);
if (MetaspaceSize > MaxMetaspaceSize) {
MetaspaceSize = MaxMetaspaceSize;
}
MetaspaceSize = align_down_bounded(MetaspaceSize, _commit_alignment);
assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
MinMetaspaceExpansion = align_down_bounded(MinMetaspaceExpansion, _commit_alignment);
MaxMetaspaceExpansion = align_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
CompressedClassSpaceSize = align_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
size_t min_metaspace_sz =
VIRTUALSPACEMULTIPLIER * InitialBootClassLoaderMetaspaceSize;
if (UseCompressedClassPointers) {
if ((min_metaspace_sz + CompressedClassSpaceSize) > MaxMetaspaceSize) {
if (min_metaspace_sz >= MaxMetaspaceSize) {
vm_exit_during_initialization("MaxMetaspaceSize is too small.");
} else {
FLAG_SET_ERGO(size_t, CompressedClassSpaceSize,
MaxMetaspaceSize - min_metaspace_sz);
}
}
} else if (min_metaspace_sz >= MaxMetaspaceSize) {
FLAG_SET_ERGO(size_t, InitialBootClassLoaderMetaspaceSize,
min_metaspace_sz);
}
set_compressed_class_space_size(CompressedClassSpaceSize);
}
复制代码
在ergo初始化过程当中主要是进行一些全局变量的设置,例如MaxMetaspaceSize、MinMetaspaceExpansion、MaxMetaspaceExpansion和CompressedClassSpaceSize。其中比较重要的就是MaxMetaspaceSize和CompressedClassSpaceSize,默认状况下CompressedClassSpaceSize的大小为1G(相见globals.hpp)。
全局初始化主要是用来初始化VirtualSpaceList和ChunkManager。其中ClassVirtualSpaceList的首节点大小直接分配为CompressedClassSpaceSize(不考虑开启UseSharedSpaces模式的状况下)。而NonClassVirtualSpaceList的首节点大小则分配为4M*8/2(64位机器)或 2200K/4*2(32位机器)。源码中有不少关于对齐计算的源码,较为啰嗦,此处就不展现了。
void Metaspace::post_initialize() {
MetaspaceGC::post_initialize();
}
复制代码
post初始化主要是用于MetaspaceGC的初始化,本文不关注Metaspace的GC,所以此部分也不进行探讨。
classLoaderMetaspace的初始化与metaspace的初始化不一样,metaspace是在JVM启动的时候就已经初始化了,而classLoaderMetaspace的初始化则是当其对应的classLoader须要使用metaspace的时候才会进行初始化,代码以下:
ClassLoaderMetaspace* ClassLoaderData::metaspace_non_null() {
ClassLoaderMetaspace* metaspace = OrderAccess::load_acquire(&_metaspace);
if (metaspace == NULL) {
MutexLockerEx ml(_metaspace_lock, Mutex::_no_safepoint_check_flag);
// Check if _metaspace got allocated while we were waiting for this lock.
if ((metaspace = _metaspace) == NULL) {
if (this == the_null_class_loader_data()) {
assert (class_loader() == NULL, "Must be");
metaspace = new ClassLoaderMetaspace(_metaspace_lock, Metaspace::BootMetaspaceType);
} else if (is_anonymous()) {
metaspace = new ClassLoaderMetaspace(_metaspace_lock, Metaspace::AnonymousMetaspaceType);
} else if (class_loader()->is_a(SystemDictionary::reflect_DelegatingClassLoader_klass())) {
metaspace = new ClassLoaderMetaspace(_metaspace_lock, Metaspace::ReflectionMetaspaceType);
} else {
metaspace = new ClassLoaderMetaspace(_metaspace_lock, Metaspace::StandardMetaspaceType);
}
OrderAccess::release_store(&_metaspace, metaspace);
}
}
return metaspace;
}
复制代码
在这段代码中咱们能够看到四种ClassLoaderMetaspace类型分别与四种ClassLoader一一对应。
接下来是classLoaderMetaspace的初始化过程,
void ClassLoaderMetaspace::initialize(Mutex* lock, Metaspace::MetaspaceType type) {
Metaspace::verify_global_initialization();
DEBUG_ONLY(Atomic::inc(&g_internal_statistics.num_metaspace_births));
_vsm = new SpaceManager(Metaspace::NonClassType, type, lock)
if (Metaspace::using_class_space()) {
_class_vsm = new SpaceManager(Metaspace::ClassType, type, lock);
}
MutexLockerEx cl(MetaspaceExpand_lock, Mutex::_no_safepoint_check_flag);
initialize_first_chunk(type, Metaspace::NonClassType);
if (Metaspace::using_class_space()) {
initialize_first_chunk(type, Metaspace::ClassType);
}
}
复制代码
在这段代码中咱们能够看到初始化过程主要包含两个步骤,
咱们接下来重点关注一下第一个Chunk的初始化过程(简单期间,咱们只关注NonClass类型的初始化,其实二者基本同样)。
// 代码已通过简单整理
void ClassLoaderMetaspace::initialize_first_chunk(Metaspace::MetaspaceType type, Metaspace::MetadataType mdtype) {
size_t chunk_word_size = get_space_manager(mdtype)->get_initial_chunk_size(type);
Metachunk* chunk = Metaspace::get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
if (chunk == NULL) {
chunk = Metaspace::get_space_list(mdtype)->get_new_chunk(chunk_word_size,
get_space_manager(mdtype)->medium_chunk_bunch());
}
if (chunk != NULL) {
get_space_manager(mdtype)->add_chunk(chunk, true);
}
}
复制代码
整体看来,初始化第一个chunk分为了三步:
不过在探究这三步以前,咱们先来看看第一句代码,计算chunk大小,咱们先来看看chunk大小如何计算,
enum ChunkSizes { // in words.
ClassSpecializedChunk = 128,
SpecializedChunk = 128,
ClassSmallChunk = 256,
SmallChunk = 512,
ClassMediumChunk = 4 * K,
MediumChunk = 8 * K
};
size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) {
size_t chunk_sizes[] = {
specialized_chunk_size(is_class_space),
small_chunk_size(is_class_space),
medium_chunk_size(is_class_space)
};
for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) {
if (requested <= chunk_sizes[i]) {
return chunk_sizes[i];
}
}
return requested;
}
size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const {
size_t requested;
if (is_class()) {
switch (type) {
case Metaspace::BootMetaspaceType: requested = Metaspace::first_class_chunk_word_size(); break;
case Metaspace::AnonymousMetaspaceType: requested = ClassSpecializedChunk; break;
case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break;
default: requested = ClassSmallChunk; break;
}
} else {
switch (type) {
case Metaspace::BootMetaspaceType: requested = Metaspace::first_chunk_word_size(); break;
case Metaspace::AnonymousMetaspaceType: requested = SpecializedChunk; break;
case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break;
default: requested = SmallChunk; break;
}
}
const size_t adjusted = adjust_initial_chunk_size(requested);
assert(adjusted != 0, "Incorrect initial chunk size. Requested: "
SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted);
return adjusted;
}
复制代码
在这里咱们能够看到不一样类型的classLoaderMetaspace之间的区别,它们的初始chunk大小是不同的。同时,对于Class类和NonClass类型的Chunk,它们的specialized、small、medium三档的大小值也是彻底不一样的。
接下来,咱们重点仍然放回第一个chunk的初始化过程,此处重点关注前两步,先是第一步——从全局chunk_freelist中尝试分配一个chunk。ChunkManager::chunk_freelist_allocate(size_t word_size)
中主要调用了ChunkManager::free_chunks_get
方法,咱们来看看具体源码,
// 去除了校验代码&日志代码
Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
slow_locked_verify();
Metachunk* chunk = NULL;
bool we_did_split_a_chunk = false;
if (list_index(word_size) != HumongousIndex) {
ChunkList* free_list = find_free_chunks_list(word_size);
chunk = free_list->head();
if (chunk == NULL) {
ChunkIndex target_chunk_index = get_chunk_type_by_size(word_size, is_class());
Metachunk* larger_chunk = NULL;
ChunkIndex larger_chunk_index = next_chunk_index(target_chunk_index);
while (larger_chunk == NULL && larger_chunk_index < NumberOfFreeLists) {
larger_chunk = free_chunks(larger_chunk_index)->head();
if (larger_chunk == NULL) {
larger_chunk_index = next_chunk_index(larger_chunk_index);
}
}
if (larger_chunk != NULL) {
chunk = split_chunk(word_size, larger_chunk);
we_did_split_a_chunk = true;
}
}
if (chunk == NULL) {
return NULL;
}
free_list->remove_chunk(chunk)
} else {
chunk = humongous_dictionary()->get_chunk(word_size);
if (chunk == NULL) {
return NULL;
}
}
chunk->set_next(NULL);
chunk->set_prev(NULL);
return chunk;
}
复制代码
简单讲解一下这段代码,内存分配分为了两种状况
其中specialized、small、medium三种类型的freeChunk分别对应了三个列表,而humongou类型的freeChunk因为其大小不固定,则使用排序二叉树来存储。
非humongou类型的chunk在分配过程当中若是失败,会尝试将更大的chunk进行拆分。
接下来看从全局virtualSpaceList中建立一个新的chunk的过程,
Metachunk* VirtualSpaceList::get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity) {
Metachunk* next = current_virtual_space()->get_chunk_vs(chunk_word_size);
if (next != NULL) {
return next;
}
const size_t size_for_padding = largest_possible_padding_size_for_chunk(chunk_word_size, this->is_class());
size_t min_word_size = align_up(chunk_word_size + size_for_padding, Metaspace::commit_alignment_words());
size_t preferred_word_size = align_up(suggested_commit_granularity, Metaspace::commit_alignment_words());
if (min_word_size >= preferred_word_size) {
preferred_word_size = min_word_size;
}
bool expanded = expand_by(min_word_size, preferred_word_size);
if (expanded) {
next = current_virtual_space()->get_chunk_vs(chunk_word_size);
}
return next;
}
复制代码
整段代码能够整理为三步:
比较让人感到好奇的是第二步,扩展virtualSpace,
bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
return false;
}
size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
if (allowed_expansion_words < min_words) {
return false;
}
size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
bool vs_expanded = expand_node_by(current_virtual_space(), min_words, max_expansion_words);
if (vs_expanded) {
return true;
}
retire_current_virtual_space();
size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
grow_vs_words = align_up(grow_vs_words, Metaspace::reserve_alignment_words());
if (create_new_virtual_space(grow_vs_words)) {
if (current_virtual_space()->is_pre_committed()) {
return true;
}
return expand_node_by(current_virtual_space(), min_words, max_expansion_words);
}
return false;
}
复制代码
这一步主要包含几个核心步骤:
整个classLoaderMetaspace的初始化过程能够总结为以下步骤:
对于metaspace而言,除了初始化以外,还有两个最重要的功能——分配内存和释放内存。咱们先来看分配内存,
static bool is_class_space_allocation(MetadataType mdType) {
return mdType == ClassType && using_class_space();
}
MetaWord* ClassLoaderMetaspace::allocate(size_t word_size, Metaspace::MetadataType mdtype) {
if (Metaspace::is_class_space_allocation(mdtype)) {
return class_vsm()->allocate(word_size);
} else {
return vsm()->allocate(word_size);
}
}
复制代码
这段代码中,咱们能够看到,只有元数据类型为Class类型以及使用压缩指针的时候才会使用Class空间,不然都是使用NonClass空间。
接下来,咱们继续探究vsm()->allocate(word_size)
方法,
MetaWord* SpaceManager::allocate(size_t word_size) {
MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
size_t raw_word_size = get_allocation_word_size(word_size);
BlockFreelist* fl = block_freelists();
MetaWord* p = NULL;
if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
p = fl->get_block(raw_word_size);
}
if (p == NULL) {
p = allocate_work(raw_word_size);
}
return p;
}
复制代码
在这一步与以前metaspace初始化chunk有些殊途同归之处,此处也是先尝试从block_freelists中进行分配,分配失败再尝试从chunk中进行分配,逻辑几乎与上文的chunk初始化一摸同样。
block_freelists一样也是分为了小的和大的,数据结构以下:
class BlockFreelist : public CHeapObj<mtClass> {
BlockTreeDictionary* const _dictionary;
SmallBlocks* _small_blocks;
}
class SmallBlocks : public CHeapObj<mtClass> {
FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
}
复制代码
在small_block_max_size到small_block_min_size范围内的block经过链表来存储,更大的block则使用排序二叉树来实现。
至于chunk分配内存也一模一样,先尝试从当前chunk分配,分配失败再新建chunk进行分配。
释放内存的代码则比较简单,即直接将须要释放的内存放回block_freelist中从新使用。
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
size_t raw_word_size = get_allocation_word_size(word_size);
if (block_freelists() == NULL) {
_block_freelists = new BlockFreelist();
}
block_freelists()->return_block(p, raw_word_size);
}
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
Metablock* free_chunk = ::new (p) Metablock(word_size);
if (word_size < SmallBlocks::small_block_max_size()) {
small_blocks()->return_block(free_chunk, word_size);
} else {
dictionary()->return_chunk(free_chunk);
}
}
复制代码
至此,metaspace部分的初始化,内存分配,内存释放便已结束。