JavaShuo
栏目
标签
[paper]Boosting Adversarial Attacks with Momentum
时间 2020-12-25
标签
AEs
机器学习
深度学习
栏目
C&C++
繁體版
原文
原文链接
本文提出一个基于动量(Momentum)的迭代算法,该方法通过梯度以迭代的方式对输入进行扰动以最大化损失函数,并且该方法还会在迭代过程中沿损失函数的梯度方向累加速度矢量,目的是稳定更新方向并避免糟糕的局部最大值。从而产生更好的可迁移(transferable)的对抗样本,解决了对抗样本生成算法对于黑盒模型的低成功率问题。 文中提到: 对抗样本迁移性的现象是由于不同的机器学习模型在数据点周围学习到相
>>阅读原文<<
相关文章
1.
论文解读《Boosting Adversarial Attacks with Momentum》
2.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3.
[advGAN]Generating Adversarial Examples With Adversarial Networks
4.
【迁移攻击论文笔记】动量逻辑集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
5.
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER
6.
Generating Adversarial Examples with Adversarial Networks
7.
论文阅读 Decision-based Black-box Adversarial Attacks
8.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
9.
DoS Attacks Prevention with TCP Intercept
10.
Improved Baselines with Momentum Contrastive Learning
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
PHP rtrim() 函数
-
PHP参考手册
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
算法总结-股票买卖
相关标签/搜索
adversarial
attacks
momentum
with+this
with...connect
with...as
by...with
C&C++
系统安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Android Studio3.4中出现某个项目全部乱码的情况之解决方式
2.
Packet Capture
3.
Android 开发之 仿腾讯视频全部频道 RecyclerView 拖拽 + 固定首个
4.
rg.exe占用cpu导致卡顿解决办法
5.
X64内核之IA32e模式
6.
DIY(也即Build Your Own) vSAN时,选择SSD需要注意的事项
7.
选择深圳网络推广外包要注意哪些问题
8.
店铺运营做好选款、测款的工作需要注意哪些东西?
9.
企业找SEO外包公司需要注意哪几点
10.
Fluid Mask 抠图 换背景教程
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文解读《Boosting Adversarial Attacks with Momentum》
2.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3.
[advGAN]Generating Adversarial Examples With Adversarial Networks
4.
【迁移攻击论文笔记】动量逻辑集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
5.
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER
6.
Generating Adversarial Examples with Adversarial Networks
7.
论文阅读 Decision-based Black-box Adversarial Attacks
8.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
9.
DoS Attacks Prevention with TCP Intercept
10.
Improved Baselines with Momentum Contrastive Learning
>>更多相关文章<<