JavaShuo
栏目
标签
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER
时间 2020-12-30
原文
原文链接
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER (ICLR 2020) 摘要 we propose a method to improve existing transformation-based defenses. 1 介绍 基于随机变换的防御方
>>阅读原文<<
相关文章
1.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
[paper]Boosting Adversarial Attacks with Momentum
3.
对抗样本(论文解读四): Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
4.
Practical Black-Box Attacks against Machine Learning
5.
Enhancing Perceptual Loss with Adversarial Feature Matching for Super-Resolution
6.
论文解读《Boosting Adversarial Attacks with Momentum》
7.
TRAINING A CLASSIFIER
8.
[paper]Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
9.
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
10.
ÆGIS: Shielding Vulnerable Smart Contracts Against Attacks
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
Docker 安装 Tomcat
-
Docker教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
Java 8 Stream 教程
相关标签/搜索
adversarial
classifier
attacks
distribution
enhancing
a'+'a
a+aa+aaa+a...a
with+this
with...connect
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
说说Python中的垃圾回收机制?
2.
蚂蚁金服面试分享,阿里的offer真的不难,3位朋友全部offer
3.
Spring Boot (三十一)——自定义欢迎页及favicon
4.
Spring Boot核心架构
5.
IDEA创建maven web工程
6.
在IDEA中利用maven创建java项目和web项目
7.
myeclipse新导入项目基本配置
8.
zkdash的安装和配置
9.
什么情况下会导致Python内存溢出?要如何处理?
10.
CentoOS7下vim输入中文
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
2.
[paper]Boosting Adversarial Attacks with Momentum
3.
对抗样本(论文解读四): Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
4.
Practical Black-Box Attacks against Machine Learning
5.
Enhancing Perceptual Loss with Adversarial Feature Matching for Super-Resolution
6.
论文解读《Boosting Adversarial Attacks with Momentum》
7.
TRAINING A CLASSIFIER
8.
[paper]Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
9.
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
10.
ÆGIS: Shielding Vulnerable Smart Contracts Against Attacks
>>更多相关文章<<