官方说明以下:node
Asynchronously passes SparkListenerEvents to registered SparkListeners.apache
即它的功能是异步地将SparkListenerEvent传递给已经注册的SparkListener,这种异步的机制是经过生产消费者模型来实现的。数组
首先,它定义了 4 个 消息堵塞队列,队列的名字分别为shared、appStatus、executorManagement、eventLog。队列的类型是 org.apache.spark.scheduler.AsyncEventQueue#AsyncEventQueue,保存在 queues 变量中。每个队列上均可以注册监听器,若是队列没有监听器,则会被移除。app
它有启动和stop和start两个标志位来指示 监听总线的的启动中止状态。 若是总线没有启动,有事件过来,先放到 一个待添加的可变数组中,不然直接将事件 post 到每个队列中。异步
其直接依赖类是 AsyncEventQueue, 至关于 LiveListenerBus 的多事件队列是对 AsyncEventQueue 进一步的封装。ide
其继承关系以下:post
它有启动和stop和start两个标志位来指示 监听总线的的启动中止状态。spa
其内部维护了listenersPlusTimers 主要就是用来保存注册到这个总线上的监听器对象的。code
post 操做将事件放入内部的 LinkedBlockingQueue中,默认大小是 10000。对象
有一个事件分发器,它不停地从 LinkedBlockingQueue 执行 take 操做,获取事件,并将事件进一步分发给全部的监听器,由org.apache.spark.scheduler.SparkListenerBus#doPostEvent 方法实现事件转发,具体代码以下:
1 protected override def doPostEvent(
2 listener: SparkListenerInterface, 3 event: SparkListenerEvent): Unit = { 4 event match { 5 case stageSubmitted: SparkListenerStageSubmitted => 6 listener.onStageSubmitted(stageSubmitted) 7 case stageCompleted: SparkListenerStageCompleted => 8 listener.onStageCompleted(stageCompleted) 9 case jobStart: SparkListenerJobStart => 10 listener.onJobStart(jobStart) 11 case jobEnd: SparkListenerJobEnd => 12 listener.onJobEnd(jobEnd) 13 case taskStart: SparkListenerTaskStart => 14 listener.onTaskStart(taskStart) 15 case taskGettingResult: SparkListenerTaskGettingResult => 16 listener.onTaskGettingResult(taskGettingResult) 17 case taskEnd: SparkListenerTaskEnd => 18 listener.onTaskEnd(taskEnd) 19 case environmentUpdate: SparkListenerEnvironmentUpdate => 20 listener.onEnvironmentUpdate(environmentUpdate) 21 case blockManagerAdded: SparkListenerBlockManagerAdded => 22 listener.onBlockManagerAdded(blockManagerAdded) 23 case blockManagerRemoved: SparkListenerBlockManagerRemoved => 24 listener.onBlockManagerRemoved(blockManagerRemoved) 25 case unpersistRDD: SparkListenerUnpersistRDD => 26 listener.onUnpersistRDD(unpersistRDD) 27 case applicationStart: SparkListenerApplicationStart => 28 listener.onApplicationStart(applicationStart) 29 case applicationEnd: SparkListenerApplicationEnd => 30 listener.onApplicationEnd(applicationEnd) 31 case metricsUpdate: SparkListenerExecutorMetricsUpdate => 32 listener.onExecutorMetricsUpdate(metricsUpdate) 33 case executorAdded: SparkListenerExecutorAdded => 34 listener.onExecutorAdded(executorAdded) 35 case executorRemoved: SparkListenerExecutorRemoved => 36 listener.onExecutorRemoved(executorRemoved) 37 case executorBlacklistedForStage: SparkListenerExecutorBlacklistedForStage => 38 listener.onExecutorBlacklistedForStage(executorBlacklistedForStage) 39 case nodeBlacklistedForStage: SparkListenerNodeBlacklistedForStage => 40 listener.onNodeBlacklistedForStage(nodeBlacklistedForStage) 41 case executorBlacklisted: SparkListenerExecutorBlacklisted => 42 listener.onExecutorBlacklisted(executorBlacklisted) 43 case executorUnblacklisted: SparkListenerExecutorUnblacklisted => 44 listener.onExecutorUnblacklisted(executorUnblacklisted) 45 case nodeBlacklisted: SparkListenerNodeBlacklisted => 46 listener.onNodeBlacklisted(nodeBlacklisted) 47 case nodeUnblacklisted: SparkListenerNodeUnblacklisted => 48 listener.onNodeUnblacklisted(nodeUnblacklisted) 49 case blockUpdated: SparkListenerBlockUpdated => 50 listener.onBlockUpdated(blockUpdated) 51 case speculativeTaskSubmitted: SparkListenerSpeculativeTaskSubmitted => 52 listener.onSpeculativeTaskSubmitted(speculativeTaskSubmitted) 53 case _ => listener.onOtherEvent(event) 54 } 55 }
而后去调用 listener 的相对应的方法。
就这样,事件总线上的消息事件被监听器消费了。