题目以下:spa
Given two integer arrays
arr1
andarr2
, return the minimum number of operations (possibly zero) needed to makearr1
strictly increasing.codeIn one operation, you can choose two indices
0 <= i < arr1.length
and0 <= j < arr2.length
and do the assignmentarr1[i] = arr2[j]
.blogIf there is no way to make
arr1
strictly increasing, return-1
.排序Example 1:it
Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4] Output: 1 Explanation: Replace with , then . 52arr1 = [1, 2, 3, 6, 7]Example 2:io
Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1] Output: 2 Explanation: Replace with and then replace with . . 5334arr1 = [1, 3, 4, 6, 7]Example 3:class
Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3] Output: -1 Explanation: You can't make strictly increasing.arr1Constraints:im
1 <= arr1.length, arr2.length <= 2000
0 <= arr1[i], arr2[i] <= 10^9
解题思路:若是arr1[i]个元素须要交换的话,那么必定是和arr2中大于arr1[i-1]的全部值中最小的那个交换。在这个前提下,能够利用动态规划的思想来解决这个问题。首先对arr2去重排序,记dp[i][j] = v 表示使得arr1在0~i区间递增须要的最小交换次数为v,而且最后一个交换的操做是 arr1[i] 与 arr2[j]交换,因为存在不须要交换的状况,因此令 dp[i][len(arr2)]为arr1[i]为不须要交换。由于题目要保证递增,因此只须要关注arr1[i-1]与arr[i]的值便可,而二者之间只有如下四种状况:sort
1. arr1[i] 与 arr1[i-1]都不交换,这个的前提是 arr1[i] > arr1[i-1],有 dp[i][len(arr2)] = dp[i-1][len(arr2)] ;di
2. 只有arr1[i] 须要交换,对于任意的arr2[j] > arr1[i-1],都有 dp[i][j] = dp[i-1][len(arr2)] + 1;
3. 只有arr1[i-1] 须要交换,对于任意的 arr2[j] < arr1[i],都有 dp[i][len(arr2)] = dp[i-1][j] + 1;
4.二者都要交换,若是i-1与j-1交换,那么i就和j交换,有dp[i][j] = dp[i-1][j-1] + 1
最后的结果只须要求出四种状况的最小值便可。
代码以下:
class Solution { public: int makeArrayIncreasing(vector<int>& arr1, vector<int>& arr2) { set<int> st(arr2.begin(), arr2.end()); //arr2.clear(); arr2.assign(st.begin(), st.end()); //arr2.sort(); sort(arr2.begin(), arr2.end()); vector <vector<int>> dp ;for (int i =0;i< arr1.size();i++){ vector<int> v2 (arr2.size()+1,2001); dp.push_back(v2); } for (int i = 0 ;i < arr2.size();i++){ dp[0][i] = 1; } int res = 2001; int LAST_INDEX = arr2.size(); dp[0][arr2.size()] = 0; //int ] = 0; for (int i =1 ;i < arr1.size();i++){ for (int j = 0;j < arr2.size();j++){ //only [i] exchange if (arr2[j] > arr1[i-1]){ dp[i][j] = min(dp[i][j],dp[i-1][LAST_INDEX] + 1); } //both [i] and [i-1] exchange if(j > 0){ dp[i][j] = min(dp[i][j],dp[i-1][j-1] + 1); } //only [i-1] change if (arr1[i] > arr2[j]){ dp[i][LAST_INDEX] = min(dp[i][LAST_INDEX],dp[i-1][j]); } } // no exchange if (arr1[i] > arr1[i-1]){ dp[i][LAST_INDEX] = min(dp[i][LAST_INDEX],dp[i-1][LAST_INDEX]); } } for (int i = 0; i <= arr2.size();i++){ res = min(res,dp[arr1.size()-1][i]); } return res == 2001 ? -1 : res; } };