[深度学习] 池化层

转载自:https://blog.csdn.net/l691899397/article/details/52250190 池化层的输入一般来源于上一个卷积层,主要的作用是提供了很强的鲁棒性。(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且减少了参数的数量,防止过拟合现象的发生。池化层一般没有参数,所以反向
相关文章
相关标签/搜索