1. 模板的概念。ios
咱们已经学过重载(Overloading),对重载函数而言,C++的检查机制能经过函数参数的不一样及所属类的不一样。正确的调用重载函数。例如,为求两个数的最大值,咱们定义MAX()函数须要对不一样的数据类型分别定义不一样重载(Overload)版本。编程
//函数1.数组
int max(int x,int y);
{return(x>y)?x:y ;}函数
//函数2.
float max( float x,float y){
return (x>y)? x:y ;}工具
//函数3.
double max(double x,double y)
{return (c>y)? x:y ;}指针
但若是在主函数中,咱们分别定义了 char a,b; 那么在执行max(a,b);时 程序就会出错,由于咱们没有定义char类型的重载版本。对象
如今,咱们再从新审视上述的max()函数,它们都具备一样的功能,即求两个数的最大值,可否只写一套代码解决这个问题呢?这样就会避免因重载函数定义不 全面而带来的调用错误。为解决上述问题C++引入模板机制,模板定义:模板就是实现代码重用机制的一种工具,它能够实现类型参数化,即把类型定义为参数, 从而实现了真正的代码可重用性。模版能够分为两类,一个是函数模版,另一个是类模版。blog
2. 函数模板的写法编译器
函数模板的通常形式以下:it
Template <class或者也能够用typename T>
返回类型 函数名(形参表)
{//函数定义体 }
说明: template是一个声明模板的关键字,表示声明一个模板关键字class不能省略,若是类型形参多余一个 ,每一个形参前都要加class <类型 形参表>能够包含基本数据类型能够包含类类型.
请看如下程序:
//Test.cpp
#include <iostream>
using std::cout;
using std::endl;
//声明一个函数模版,用来比较输入的两个相同数据类型的参数的大小,class也能够被typename代替,
//T能够被任何字母或者数字代替。
template <class T>
T min(T x,T y)
{ return(x<y)?x:y;}
void main( )
{
int n1=2,n2=10;
double d1=1.5,d2=5.6;
cout<< "较小整数:"<<min(n1,n2)<<endl;
cout<< "较小实数:"<<min(d1,d2)<<endl;
system("PAUSE");
}
程序运行结果:
程序分析:main()函数中定义了两个整型变量n1 , n2 两个双精度类型变量d1 , d2而后调用min( n1, n2); 即实例化函数模板T min(T x, T y)其中T为int型,求出n1,n2中的最小值.同理调用min(d1,d2)时,求出d1,d2中的最小值.
3. 类模板的写法
定义一个类模板:
Template < class或者也能够用typename T >
class类名{
//类定义......
};
说明:其中,template是声明各模板的关键字,表示声明一个模板,模板参数能够是一个,也能够是多个。
例如:定义一个类模板:
// ClassTemplate.h
#ifndef ClassTemplate_HH
#define ClassTemplate_HH
template<typename T1,typename T2>
class myClass{
private:
T1 I;
T2 J;
public:
myClass(T1 a, T2 b);//Constructor
void show();
};
//这是构造函数
//注意这些格式
template <typename T1,typename T2>
myClass<T1,T2>::myClass(T1 a,T2 b):I(a),J(b){}
//这是void show();
template <typename T1,typename T2>
void myClass<T1,T2>::show()
{
cout<<"I="<<I<<", J="<<J<<endl;
}
#endif
// Test.cpp
#include <iostream>
#include "ClassTemplate.h"
using std::cout;
using std::endl;
void main()
{
myClass<int,int> class1(3,5);
class1.show();
myClass<int,char> class2(3,'a');
class2.show();
myClass<double,int> class3(2.9,10);
class3.show();
system("PAUSE");
}
最后结果显示:
通常来讲,非类型模板参数能够是常整数(包括枚举)或者指向外部连接对象的指针。
那么就是说,浮点数是不行的,指向内部连接对象的指针是不行的。
template<typename T, int MAXSIZE>
class Stack{
Private:
T elems[MAXSIZE];
…
};
Int main()
{
Stack<int, 20> int20Stack;
Stack<int, 40> int40Stack;
…
};
5.使用模板类型
有时模板类型是一个容器或类,要使用该类型下的类型能够直接调用,如下是一个可打印STL中顺序和链的容器的模板函数
template <typename T>
void print(T v)
{
T::iterator itor;
for (itor = v.begin(); itor != v.end(); ++itor)
{
cout << *itor << " ";
}
cout << endl;
}
void main(int argc, char **argv){
list<int> l;
l.push_back(1);
l.push_front(2);
if(!l.empty())
print(l);
vector<int> vec;
vec.push_back(1);
vec.push_back(6);
if(!vec.empty())
print(vec);
}
打印结果
类型推导的隐式类型转换
在决定模板参数类型前,编译器执行下列隐式类型转换:
左值变换
修饰字转换
派生类到基类的转换
见《C++ Primer》([注2],P500)对此主题的完备讨论。
简而言之,编译器削弱了某些类型属性,例如咱们例子中的引用类型的左值属性。举例来讲,编译器用值类型实例化函数模板,而不是用相应的引用类型。
一样地,它用指针类型实例化函数模板,而不是相应的数组类型。
它去除const修饰,毫不会用const类型实例化函数模板,老是用相应的非 const类型,不过对于指针来讲,指针和 const 指针是不一样的类型。
底线是:自动模板参数推导包含类型转换,而且在编译器自动决定模板参数时某些类型属性将丢失。这些类型属性能够在使用显式函数模板参数申明时得以保留。
6. 模板的特化
若是咱们打算给模板函数(类)的某个特定类型写一个函数,就须要用到模板的特化,好比咱们打算用 long 类型调用 max 的时候,返回小的值(原谅我举了不恰当的例子):
template<> // 这表明了下面是一个模板函数
long max<long>( long a, long b ) // 对于 vc 来讲,这里的 <long> 是能够省略的
{
return a > b ? b : a;
}
实际上,所谓特化,就是代替编译器完成了对指定类型的特化工做,现代的模板库中,大量的使用了这个技巧。
对于偏特化,则只针对模板类型中部分类型进行特化,如
template<T1, T2>
class MyClass;
template<T1, T2>
class MyCalss<int, T2>//偏特化7. 仿函数仿函数这个词常常会出如今模板库里(好比 STL),那么什么是仿函数呢?顾名思义:仿函数就是能像函数同样工做的东西,请原谅我用东西这样一个代词,下面我会慢慢解释。void dosome( int i )这个 dosome 是一个函数,咱们能够这样来使用它: dosome(5);那么,有什么东西能够像这样工做么?答案1:重载了 () 操做符的对象,所以,这里须要明确两点: 1 仿函数不是函数,它是个类; 2 仿函数重载了()运算符,使得它的对你能够像函数那样子调用(代码的形式好像是在调用好比: struct DoSome { void operator()( int i ); } DoSome dosome;这里类(对 C++ 来讲,struct 和类是相同的) 重载了 () 操做符,所以它的实例 dosome 能够这样用 dosome(5); 和上面的函数调用如出一辙,不是么?因此 dosome 就是一个仿函数了。实际上还有答案2: 函数指针指向的对象。 typedef void( *DoSomePtr )( int ); typedef void( DoSome )( int ); DoSomePtr *ptr=&func; DoSome& dosome=*ptr; dosome(5); // 这里又和函数调用如出一辙了。固然,答案3 成员函数指针指向的成员函数就是意料之中的答案了。8. 仿函数的用处不论是对象仍是函数指针等等,它们都是能够被做为参数传递,或者被做为变量保存的。所以咱们就能够把一个仿函数传递给一个函数,由这个函数根据须要来调用这个仿函数(有点相似回调)。STL 模板库中,大量使用了这种技巧,来实现库的“灵活”。好比:for_each, 它的源代码大体以下:template< typename Iterator, typename Functor >void for_each( Iterator begin, Iterator end, Fucntor func ){ for( ; begin!=end; begin++ ) func( *begin );}这个 for 循环遍历了容器中的每个元素,对每一个元素调用了仿函数 func,这样就实现了 对“每一个元素作一样的事”这样一种编程的思想。特别的,若是仿函数是一个对象,这个对象是能够有成员变量的,这就让 仿函数有了“状态”,从而实现了更高的灵活性。