最近在看JUC线程池java.util.concurrent.ThreadPoolExecutor
的源码实现,其中了解到java.util.concurrent.Future
的实现原理。从目前java.util.concurrent.Future
的实现来看,虽然实现了异步提交任务,可是任务结果的获取过程须要主动调用Future#get()
或者Future#get(long timeout, TimeUnit unit)
,而前者是阻塞的,后者在异步任务执行时间不肯定的状况下有可能须要进行轮询,这两种状况和异步调用的初衷有点相违背。因而笔者想结合目前了解到的Future
实现原理的前提下扩展出支持(监听)回调的Future
,思路上参考了Guava
加强的ListenableFuture
。本文编写的时候使用的JDK是JDK11,其余版本可能不适合。java
并发大师Doug Lea在设计JUC线程池的时候,提供了一个顶层执行器接口Executor
:shell
public interface Executor { void execute(Runnable command); }
实际上,这里定义的方法Executor#execute()
是整套线程池体系最核心的接口,也就是ThreadPoolExecutor
定义的核心线程、额外建立的线程(线程池最大线程容量 - 核心线程数)都是在这个接口提交任务的时候懒建立的,也就是说ExecutorService
接口扩展的功能都是基于Executor#execute()
的基础进行扩展。Executor#execute()
方法只是单纯地把任务实例Runnable
对象投放到线程池中分配合适的线程执行,可是因为方法返回值是void
类型,咱们是没法感知任务何时执行完毕。这个时候就须要对Runnable
任务实例进行包装(下面是伪代码 + 伪逻辑):编程
// 下面这个Wrapper和Status类是笔者虚构出来 @RequiredArgsConstructor class Wrapper implements Runnable{ private final Runnable target; private Status status = Status.of("初始化"); @Override public void run(){ try{ target.run(); status = Status.of("执行成功"); }catch(Throwable t){ status = Status.of("执行异常"); } } }
咱们只须要把new Wrapper(原始Runnable实例)
投放到线程池执行,那么经过定义好的Status
状态记录变量就能得知异步任务执行的状态,以及何时执行完毕(包括正常的执行完毕和异常的执行完毕)。这里仅仅解决了任务执行的状态获取,可是Executor#execute()
方法法返回值是void
类型的特色使得咱们没法回调Runnable
对象执行的结果。这个时候须要定义一个能够回调执行结果的接口,其实已经有现成的接口Callable
:并发
@FunctionalInterface public interface Callable<V> { V call() throws Exception; }
这里遇到了一个问题:因为Executor#execute()
只接收Runnable
参数,咱们须要把Callable
接口适配到Runnable
接口,这个时候,作一次简单的委托便可:app
@RequiredArgsConstructor class Wrapper implements Runnable{ private final Callable callable; private Status status = Status.of("初始化"); @Getter private Object outcome; @Override public void run(){ try{ outcome = callable.call(); status = Status.of("执行成功"); }catch(Throwable t){ status = Status.of("执行异常"); outcome = t; } } }
这里把Callable
实例直接委托给Wrapper
,而Wrapper
实现了Runnable
接口,执行结果直接存放在定义好的Object
类型的对象outcome
中便可。当咱们感知到执行状态已经结束,就能够从outcome
中提取到执行结果。异步
上面一个小结仅仅对Future
实现作一个相对合理的虚拟推演,实际上,RunnableFuture
才是JUC中经常使用的复合接口,它同时实现了Runnable
和Future
:ide
public interface RunnableFuture<V> extends Runnable, Future<V> { void run(); }
上一节提到的虚构出来的Wrapper
类,在JUC中相似的实现是java.util.concurrent.FutureTask
,它就是Callable
和Runnable
的适配器,FutureTask
实现了RunnableFuture
接口:函数
public class FutureTask<V> implements RunnableFuture<V> { private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */ private Callable<V> callable; /** The result to return or exception to throw from get() */ private Object outcome; // non-volatile, protected by state reads/writes /** The thread running the callable; CASed during run() */ private volatile Thread runner; /** Treiber stack of waiting threads */ private volatile WaitNode waiters; // 省略其余代码 }
注意到核心属性state
表示执行状态,outcome
承载执行结果。接着看提交Callable
类型任务的方法ExecutorService#submit()
:测试
public interface ExecutorService extends Executor { // 省略其余接口方法 <T> Future<T> submit(Callable<T> task); }
当咱们经过上述ExecutorService#submit()
方法提交Callable
类型任务的时候,实际上作了以下的步骤:ui
task
的存在性,若是为null
抛出NullPointerException
。Callable
类型的task
包装为FutureTask
实例。FutureTask
实例放到线程池中执行,也就是调用Executor#execute(FutureTask实例)
。FutureTask
实例的接口实例RunnableFuture
(其实是返回子接口Future
实例)。若是咱们须要获取结果,能够Future#get()
或者Future#get(long timeout, TimeUnit unit)
获取,调用这两个方法的时候参看FutureTask
里面的方法实现,得知步骤以下:
state
小于等于COMPLETING(1)
,说明任务还在执行中,获取结果的请求线程会放入WaitNode
类型的队列中进行阻塞。state
和把结果赋值到outcome
以外,还会唤醒全部阻塞获取结果的线程,而后调用钩子方法FutureTask#done()
(具体见源码FutureTask#finishCompletion()
)。其实分析了这么多,笔者想指出的结论就是:Callable
类型任务提交到线程池中执行完毕(包括正常执行完毕和异常执行完毕)以后,都会回调钩子方法FutureTask#done()
。这个就是咱们扩展可监听Future
的理论依据。
先作一次编码实现,再简单测试其功能。
先定义一个Future
接口的子接口ListenableFuture
,用于添加可监听的回调:
public interface ListenableFuture<V> extends Future<V> { void addCallback(ListenableFutureCallback<V> callback, Executor executor); }
ListenableFutureCallback
是一个函数式回调接口:
@FunctionalInterface public interface ListenableFutureCallback<V> { void callback(V value, Throwable throwable); }
对于ListenableFutureCallback
而言,回调的结果value
和throwable
是互斥的。正常执行完毕的状况下value
将会是执行结果值,throwable
为null
;异常执行完毕的状况下,value
将会是null
,throwable
将会是抛出的异常实例。若是更习惯于分开处理正常执行完毕的结果和异常执行完毕的结果,ListenableFutureCallback
能够这样定义:
public interface ListenableFutureCallback<V> { void onSuccess(V value); void onError(Throwable throwable); }
接着定义ListenableExecutorService
接口继承ExecutorService
接口:
public interface ListenableExecutorService extends ExecutorService { <T> ListenableFuture<T> listenableSubmit(Callable<T> callable); /** * 定义这个方法是由于有些时候因为任务执行时间很是短,有可能经过返回的ListenableFuture实例添加回调以前已经执行完毕,所以能够支持显式传入回调 * * @param callable callable * @param callbacks callbacks * @param executor executor * @return ListenableFuture */ <T> ListenableFuture<T> listenableSubmit(Callable<T> callable, List<ListenableFutureCallback<T>> callbacks, Executor executor); }
而后添加一个执行单元适配器ListenableFutureCallbackRunnable
,承载每次回调触发的调用(实现Runnable
接口,从而支持异步执行):
@RequiredArgsConstructor public class ListenableFutureCallbackRunnable<V> implements Runnable { private final ListenableFutureCallback<V> callback; private final V value; private final Throwable throwable; @Override public void run() { callback.callback(value, throwable); } }
接着须要定义一个FutureTask
的子类ListenableFutureTask
,核心逻辑是覆盖FutureTask#done()
方法触发回调:
// ListenableFutureTask public class ListenableFutureTask<V> extends FutureTask<V> implements ListenableFuture<V> { private final List<Execution<V>> executions = new ArrayList<>(); public ListenableFutureTask(Callable<V> callable) { super(callable); } public ListenableFutureTask(Runnable runnable, V result) { super(runnable, result); } public static <V> ListenableFutureTask<V> newTaskFor(Callable<V> callable) { return new ListenableFutureTask<>(callable); } @Override protected void done() { Iterator<Execution<V>> iterator = executions.iterator(); Throwable throwable = null; V value = null; try { value = get(); } catch (Throwable t) { throwable = t; } while (iterator.hasNext()) { Execution<V> execution = iterator.next(); ListenableFutureCallbackRunnable<V> callbackRunnable = new ListenableFutureCallbackRunnable<>(execution.getCallback(), value, throwable); // 异步回调 if (null != execution.getExecutor()) { execution.getExecutor().execute(callbackRunnable); } else { // 同步回调 callbackRunnable.run(); } } } @Override public void addCallback(ListenableFutureCallback<V> callback, Executor executor) { Execution<V> execution = new Execution<>(); execution.setCallback(callback); execution.setExecutor(executor); executions.add(execution); } } // Execution - 承载每一个回调实例和对应的Executor,Executor实例为null则进行同步回调 @Data public class Execution <V>{ private Executor executor; private ListenableFutureCallback<V> callback; }
最后一步就是编写线程池ListenableThreadPoolExecutor
,继承自ThreadPoolExecutor
而且实现ListenableExecutorService
接口:
public class ListenableThreadPoolExecutor extends ThreadPoolExecutor implements ListenableExecutorService { public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory); } public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, handler); } public ListenableThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler); } @Override public <T> ListenableFuture<T> listenableSubmit(Callable<T> callable) { if (null == callable) { throw new IllegalArgumentException("callable"); } ListenableFutureTask<T> listenableFutureTask = ListenableFutureTask.newTaskFor(callable); execute(listenableFutureTask); return listenableFutureTask; } @Override public <T> ListenableFuture<T> listenableSubmit(Callable<T> callable, List<ListenableFutureCallback<T>> callbacks, Executor executor) { if (null == callable) { throw new IllegalArgumentException("callable"); } if (null == callbacks) { throw new IllegalArgumentException("callbacks"); } ListenableFutureTask<T> listenableFutureTask = ListenableFutureTask.newTaskFor(callable); for (ListenableFutureCallback<T> callback : callbacks) { listenableFutureTask.addCallback(callback, executor); } execute(listenableFutureTask); return listenableFutureTask; } }
引入junit
,编写测试类以下:
public class ListenableFutureTest { private static ListenableExecutorService EXECUTOR; private static Executor E; @BeforeClass public static void before() { EXECUTOR = new ListenableThreadPoolExecutor(1, 3, 0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(10), new ThreadFactory() { private final AtomicInteger counter = new AtomicInteger(); @Override public Thread newThread(Runnable r) { Thread thread = new Thread(r); thread.setDaemon(true); thread.setName(String.format("ListenableWorker-%d", counter.getAndIncrement())); return thread; } }); E = Executors.newFixedThreadPool(3); } @Test public void testListenableFuture1() throws Exception { ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> { Thread.sleep(1000); return "message"; }); future.addCallback((v, t) -> { System.out.println(String.format("Value = %s,Throwable = %s", v, t)); }, null); Thread.sleep(2000); } @Test public void testListenableFuture2() throws Exception { ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> { Thread.sleep(1000); throw new RuntimeException("exception"); }); future.addCallback((v, t) -> { System.out.println(String.format("Value = %s,Throwable = %s", v, t)); }, null); Thread.sleep(2000); } @Test public void testListenableFuture3() throws Exception { ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> { Thread.sleep(1000); return "message"; }); future.addCallback((v, t) -> { System.out.println(String.format("Value = %s,Throwable = %s", v, t)); }, E); System.out.println("testListenableFuture3 end..."); Thread.sleep(2000); } @Test public void testListenableFuture4() throws Exception { ListenableFuture<String> future = EXECUTOR.listenableSubmit(() -> { Thread.sleep(1000); throw new RuntimeException("exception"); }); future.addCallback((v, t) -> { System.out.println(String.format("Value = %s,Throwable = %s", v, t)); }, E); System.out.println("testListenableFuture4 end..."); Thread.sleep(2000); } }
执行结果:
// testListenableFuture1 Value = message,Throwable = null // testListenableFuture2 Value = null,Throwable = java.util.concurrent.ExecutionException: java.lang.RuntimeException: exception // testListenableFuture3 testListenableFuture3 end... Value = message,Throwable = null // testListenableFuture4 testListenableFuture4 end... Value = null,Throwable = java.util.concurrent.ExecutionException: java.lang.RuntimeException: exception
和预期的结果一致,注意一下若是Callable
执行抛出异常,异常被包装为ExecutionException
,要调用Throwable#getCause()
才能获得原始的异常实例。
本文经过了解ThreadPoolExecutor
和Future
的实现原理作简单的扩展,使得异步提交任务变得更加优雅和简便。强化了动手能力的同时,也能加深对并发编程的一些认知。固然,本文只是提供一个十分简陋的实现,笔者其实还想到了如对回调处理的耗时作监控、回调打上分组标签执行等等更完善的功能,等到有须要的场景再进行实现。
这里记录一下过程当中的一些领悟:
Executor#execute()
是线程池的核心接口,全部其余功能都是基于此接口作扩展,它的设计自己是无状态的。(本文完 c-1-d e-a-20190702)