目录html
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:http://www.javashuo.com/article/p-vozphyqp-cm.htmlpython
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.font_manager import FontProperties from sklearn import datasets from sklearn.svm import SVC %matplotlib inline font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
# 保证随机数不重复 np.random.seed(1) # 建立100个二维数组,即100个2个特征的样本 X_custom = np.random.randn(100, 2) # np.logical_xor(bool1, bool2),异或逻辑运算,若是bool1和bool2的结果相同则为False,不然为True # ++和--为一三象限,+-和-+为二四象限,如此作则100个样本一定线性不可分 y_custom = np.logical_xor(X_custom[:, 0] > 0, X_custom[:, 1] > 0) # 二四象限为True,即为1类;一三象限为False,即为-1类 y_custom = np.where(y_custom, 1, -1)
def plot_decision_regions(X, y, classifier=None): marker_list = ['o', 'x', 's'] color_list = ['r', 'b', 'g'] cmap = ListedColormap(color_list[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1 x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1 t1 = np.linspace(x1_min, x1_max, 666) t2 = np.linspace(x2_min, x2_max, 666) x1, x2 = np.meshgrid(t1, t2) y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T) y_hat = y_hat.reshape(x1.shape) plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) for ind, clas in enumerate(np.unique(y)): plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50, c=color_list[ind], marker=marker_list[ind], label=clas)
# rbf为高斯核 svm = SVC(kernel='rbf', gamma='auto', C=1, random_state=1) svm.fit(X_custom, y_custom)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=1, shrinking=True, tol=0.001, verbose=False)
plot_decision_regions(X_custom, y_custom, classifier=svm) plt.title('非线性支持向量机(自定义数据分类)',fontproperties=font) plt.legend() plt.show()
iris_data = datasets.load_iris() X = iris_data.data[:, [2, 3]] y = iris_data.target label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
def plot_decision_regions(X, y, classifier=None): marker_list = ['o', 'x', 's'] color_list = ['r', 'b', 'g'] cmap = ListedColormap(color_list[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1 x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1 t1 = np.linspace(x1_min, x1_max, 666) t2 = np.linspace(x2_min, x2_max, 666) x1, x2 = np.meshgrid(t1, t2) y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T) y_hat = y_hat.reshape(x1.shape) plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) for ind, clas in enumerate(np.unique(y)): plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50, c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
# rbf为高斯核 svm = SVC(kernel='rbf', gamma=1, C=1, random_state=1) svm.fit(X, y)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=1, kernel='rbf', max_iter=-1, probability=False, random_state=1, shrinking=True, tol=0.001, verbose=False)
plot_decision_regions(X, y, classifier=svm) plt.xlabel('花瓣长度(cm)', fontproperties=font) plt.ylabel('花瓣宽度(cm)', fontproperties=font) plt.title('非线性支持向量机代码(鸢尾花分类, gamma=1)', fontproperties=font, fontsize=20) plt.legend(prop=font) plt.show()
# rbf为高斯核 svm = SVC(kernel='rbf', gamma=100, C=1, random_state=1) svm.fit(X, y)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=100, kernel='rbf', max_iter=-1, probability=False, random_state=1, shrinking=True, tol=0.001, verbose=False)
plot_decision_regions(X, y, classifier=svm) plt.xlabel('花瓣长度(cm)', fontproperties=font) plt.ylabel('花瓣宽度(cm)', fontproperties=font) plt.title('非线性支持向量机代码(鸢尾花分类, gamma=100)', fontproperties=font, fontsize=20) plt.legend(prop=font) plt.show()