Session会话控制session
使用tensorflow建立两个矩阵,并使其相乘框架
matrix1=tf.constant([[3,3]]) matrix2=tf.constant([[2], [2]]) product=tf.matmul(matrix1,matrix2) print(product)
由于没有通过Session的run(),因此product并无实际的值,能够想象成只是搭建好了一个框架spa
运行结果:code
Tensor("MatMul:0", shape=(1, 1), dtype=int32)
session会话能够有两种控制方法,方法二就不须要手动对session进行关闭blog
#method1 sess=tf.Session() result=sess.run(product) print(result) sess.close() #method2 with tf.Session() as sess: result2=sess.run(product) print(result2)
运行结果:ip
[[12]]
Variable变量input
若是有定义Variable,必定要记得初始化,初始化了以后要进行runit
import tensorflow as tf state=tf.Variable(0,name="count") one=tf.constant(1) new_value=tf.add(state,one) update=tf.assign(state,new_value) print(state) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for _ in range(3): sess.run(update) print(sess.run(state))
placeholderio
至关于占位符号的做用,用于传入值,能够定义这个传入值的类型class
import tensorflow as tf input1=tf.placeholder(tf.float32) input2=tf.placeholder(tf.float32) output=tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}))