tensorflow学习笔记

(1)查看tensorflow的版本。python

python -c 'import tensorflow;print(tensorflow.__version__);' 基中参数c后面是要执行的命令。数组

好比要看reshape的帮助信息,能够执行以下命令:session

python -c 'import numpy as np;help(np.reshape)机器学习

(2)tensorflow一般会有两个阶段:构造计算图(称为构造阶段);执行阶段。一般须要构造用于表示机器学习模型的计算图,以及用于训练该模型的计算。在执行阶段一般须要循环来不断重复地进行训练,从而不断提升模型参数的准确性。学习

(3)用户经过tensorflow定义的变量都在缺省图中。但也能够本身定义计算图,可用tf.graph()来定义计算图。对象

(4)对numpy中的reshape的理解。reshape会对array对象中数据进行重构。it

import numpy as npio

a=np.array([[1,2,3],[4,5,6]])import

a.reshape(6)变量

结果为:

array([1, 2, 3, 4, 5, 6])

a.reshape(6,1) 结果为6行1列的数组:

array([[1],
[2],
[3],
[4],
[5],
[6]])

也能够是这样:a.reshape(6,-1),其中-1表示由系统来推算列数,只要是负数均可以,不能为0。其结果(a.reshape(6,1) 的结果同样 )为:

array([[1],
[2],
[3],
[4],
[5],
[6]])

将tensor转换为数组的方法:

    

     sess=tf.Session()

     sess.run(tf.global_variables_initializer())

     tf.ones([3,3]).eval(session=sess)

相关文章
相关标签/搜索