海量数据处理算法—Bloom Filter

1. Bloom-Filter算法简介

        Bloom-Filter,即布隆过滤器,1970年由Bloom中提出。它能够用于检索一个元素是否在一个集合中。ios

       Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。它是一个判断元素是否存在集合的快速的几率算法。Bloom Filter有可能会出现错误判断,但不会漏掉判断。也就是Bloom Filter判断元素再也不集合,那确定不在。若是判断元素存在集合中,有必定的几率判断错误。所以,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter比其余常见的算法(如hash,折半查找)极大节省了空间。 算法

      它的优势是空间效率和查询时间都远远超过通常的算法,缺点是有必定的误识别率和删除困难。数据库

      Bloom Filter的详细介绍:Bloom Filter数组

二、 Bloom-Filter的基本思想

       Bloom-Filter算法的核心思想就是利用多个不一样的Hash函数来解决“冲突”。服务器

       计算某元素x是否在一个集合中,首先能想到的方法就是将全部的已知元素保存起来构成一个集合R,而后用元素x跟这些R中的元素一一比较来判断是否存在于 集合R中;咱们能够采用链表等数据结构来实现。可是,随着集合R中元素的增长,其占用的内存将愈来愈大。试想,若是有几千万个不一样网页须要下载,所需的内 存将足以占用掉整个进程的内存地址空间。即便用MD5,UUID这些方法将URL转成固定的短小的字符串,内存占用也是至关巨大的。网络

      因而,咱们会想到用Hash table的数据结构,运用一个足够好的Hash函数将一个URL映射到二进制位数组(位图数组)中的某一位。若是该位已经被置为1,那么表示该URL已经存在。数据结构

      Hash存在一个冲突(碰撞)的问题,用同一个Hash获得的两个URL的值有可能相同。为了减小冲突,咱们能够多引入几个Hash,若是经过其中的一个 Hash值咱们得出某元素不在集合中,那么该元素确定不在集合中。只有在全部的Hash函数告诉咱们该元素在集合中时,才能肯定该元素存在于集合中。这便 是Bloom-Filter的基本思想。ide


原理要点:一是位数组, 而是k个独立hash函数。函数

1)位数组:性能

        假设Bloom Filter使用一个m比特的数组来保存信息,初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0,即BF整个数组的元素都设置为0。


2)添加元素,k个独立hash函数

       为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每一个元素映射到{1,…,m}的范围中。

         当咱们往Bloom Filter中增长任意一个元素x时候,咱们使用k个哈希函数获得k个哈希值,而后将数组中对应的比特位设置为1。即第i个哈希函数映射的位置hashi(x)就会被置为11ik)。

 注意,若是一个位置屡次被置为1,那么只有第一次会起做用,后面几回将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。   


 3)判断元素是否存在集合

    在判断y是否属于这个集合时,咱们只须要对y使用k个哈希函数获得k个哈希值,若是全部hashi(y)的位置都是11ik),即k个位置都被设置为1了,那么咱们就认为y是集合中的元素,不然就认为y不是集合中的元素。下图中y1就不是集合中的元素(由于y1有一处指向了“0”位)。y2或者属于这个集合,或者恰好是一个false positive



      显然这 个判断并不保证查找的结果是100%正确的。

Bloom Filter的缺点:

       1)Bloom Filter没法从Bloom Filter集合中删除一个元素由于该元素对应的位会牵动到其余的元素。因此一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就能够支持删除了。 此外,Bloom Filter的hash函数选择会影响算法的效果。

       2)还有一个比较重要的问题,如何根据输入元素个数n,肯定位数组m的大小及hash函数个数hash函数选择会影响算法的效果当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的状况 下,m至少要等于n*lg(1/E) 才能表示任意n个元素的集合。但m还应该更大些,由于还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge ,大概就是nlg(1/E)1.44(lg表示以2为底的对数)。 

举个例子咱们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 

 注意:

         这里m与n的单位不一样,m是bit为单位,而n则是以元素个数为单位(准确的说是不一样元素的个数)。一般单个元素的长度都是有不少bit的。因此使用bloom filter内存上一般都是节省的。 

       通常BF能够与一些key-value的数据库一块儿使用,来加快查询。因为BF所用的空间很是小,全部BF能够常驻内存。这样子的话,对于大部分不存在 的元素,咱们只须要访问内存中的BF就能够判断出来了,只有一小部分,咱们须要访问在硬盘上的key-value数据库。从而大大地提升了效率。


一个Bloom Filter有如下参数:


m bit数组的宽度(bit数)
n 加入其中的key的数量
k 使用的hash函数的个数
f False Positive的比率


Bloom Filter的f知足下列公式:


在给定m和n时,可以使f最小化的k值为:

此时给出的f为:

根据以上公式,对于任意给定的f,咱们有:


n = m ln(0.6185) / ln(f)   [1]


同时,咱们须要k个hash来达成这个目标:


k = - ln(f) / ln(2)         [2]


因为k必须取整数,咱们在Bloom Filter的程序实现中,还应该使用上面的公式来求得实际的f:


f = (1 – e-kn/m)k         [3]


以上3个公式是程序实现Bloom Filter的关键公式。


三、 扩展 CounterBloom Filter

CounterBloom Filter

BloomFilter有个缺点,就是不支持删除操做,由于它不知道某一个位从属于哪些向量。那咱们能够给Bloom Filter加上计数器,添加时增长计数器,删除时减小计数器。

但这样的Filter须要考虑附加的计数器大小,假如同个元素屡次插入的话,计数器位数较少的状况下,就会出现溢出问题。若是对计数器设置上限值的话,会致使Cache Miss,但对某些应用来讲,这并非什么问题,如Web Sharing

Compressed Bloom Filter

为了能在服务器之间更快地经过网络传输Bloom Filter,咱们有方法能在已完成Bloom Filter以后,获得一些实际参数的状况下进行压缩。

将元素所有添加入Bloom Filter后,咱们能获得真实的空间使用率,用这个值代入公式计算出一个比m小的值,从新构造Bloom Filter,对原先的哈希值进行求余处理,在误判率不变的状况下,使得其内存大小更合适。


四、 Bloom-Filter的应用

        Bloom-Filter一 般用于在大数据量的集合中断定某元素是否存在。例如邮件服务器中的垃圾邮件过滤器。在搜索引擎领域,Bloom-Filter最经常使用于网络蜘蛛 (Spider)的URL过滤,网络蜘蛛一般有一个URL列表,保存着将要下载和已经下载的网页的URL,网络蜘蛛下载了一个网页,从网页中提取到新的 URL后,须要判断该URL是否已经存在于列表中。此时,Bloom-Filter算法是最好的选择。

1.key-value 加快查询

       通常Bloom-Filter能够与一些key-value的数据库一块儿使用,来加快查询。

       通常key-value存储系统的values存在硬盘,查询就是件费时的事。Storage的数据都插入Filter,在Filter中查询都不存在时,那就不须要去Storage查询了。False Position出现时,只是会致使一次多余的Storage查询。

       因为Bloom-Filter所用的空间很是小,全部BF能够常驻内存。这样子的话,对于大部分不存在的元素,咱们只须要访问内存中的Bloom-Filter就能够判断出来了,只有一小部分,咱们须要访问在硬盘上的key-value数据库。从而大大地提升了效率。如图:

          


2 .GoogleBigTable

        GoogleBigTable也使用了Bloom Filter,以减小不存在的行或列在磁盘上的查询,大大提升了数据库的查询操做的性能。

3. Proxy-Cache

      在Internet Cache Protocol中的Proxy-Cache不少都是使用Bloom Filter存储URLs,除了高效的查询外,还能很方便得传输交换Cache信息。

4.网络应用

      1)P2P网络中查找资源操做,能够对每条网络通路保存Bloom Filter,当命中时,则选择该通路访问。

      2)广播消息时,能够检测某个IP是否已发包。

      3)检测广播消息包的环路,将Bloom Filter保存在包里,每一个节点将本身添加入Bloom Filter

     4)信息队列管理,使用Counter Bloom Filter管理信息流量。

5. 垃圾邮件地址过滤

        像网易,QQ这样的公众电子邮件(email)提供商,老是须要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。

一个办法就是记录下那些发垃圾邮件的 email地址。因为那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则须要大量的网络服务器。

若是用哈希表,每存储一亿个 email地址,就须要 1.6GB的内存(用哈希表实现的具体办法是将每个 email地址对应成一个八字节的信息指纹,而后将这些信息指纹存入哈希表,因为哈希表的存储效率通常只有 50%,所以一个 email地址须要占用十六个字节。一亿个地址大约要 1.6GB即十六亿字节的内存)。所以存贮几十亿个邮件地址可能须要上百 GB的内存。

Bloom Filter只须要哈希表 1/8 1/4 的大小就能解决一样的问题。

BloomFilter决不会漏掉任何一个在黑名单中的可疑地址。而至于误判问题,常见的补救办法是在创建一个小的白名单,存储那些可能别误判的邮件地址。



五、 Bloom-Filter的具体实现

c语言实现:

stdafx.h:

#pragma once  
#include <stdio.h>    
#include "stdlib.h"  
#include <iostream>  
#include <time.h>  
using namespace std;
#include "stdafx.h"  
  
  
#define ARRAY_SIZE 256 /*we get the 256 chars of each line*/  
#define SIZE 48000000 /* size should be 1/8 of max*/  
#define MAX  384000000/*the max bit space*/  
  
#define SETBIT(ch,n) ch[n/8]|=1<<(7-n%8)  
#define GETBIT(ch,n) (ch[n/8]&1<<(7-n%8))>>(7-n%8)  
  
unsigned int len(char *ch);/* functions to calculate the length of the url*/  
  
unsigned int RSHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int JSHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int PJWHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int ELFHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int BKDRHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int SDBMHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int DJBHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int DEKHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int BPHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int FNVHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int APHash(char* str, unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int HFLPHash(char* str,unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int HFHash(char* str,unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int StrHash( char* str,unsigned int len);/* functions to calculate the hash value of the url*/  
unsigned int TianlHash(char* str,unsigned int len);/* functions to calculate the hash value of the url*/  
  
  
int main()  
{  
    int i,num,num2=0; /* the number to record the repeated urls and the total of it*/  
    unsigned int tt=0;  
    int flag;         /*it helps to check weather the url has already existed */  
    char buf[257];    /*it helps to print the start time of the program */  
    time_t tmp = time(NULL);  
  
    char file1[100],file2[100];  
    FILE *fp1,*fp2;/*pointer to the file */  
    char ch[ARRAY_SIZE];    
    char *vector ;/* the bit space*/  
    vector = (char *)calloc(SIZE,sizeof(char));  
  
    printf("Please enter the file with repeated urls:\n");  
    scanf("%s",&file1);     
    if( (fp1 = fopen(file1,"rb")) == NULL) {  /* open the goal file*/  
      printf("Connot open the file %s!\n",file1);  
    }  
  
    printf("Please enter the file you want to save to:\n");  
    scanf("%s",&file2);  
    if( (fp2 = fopen(file2,"w")) == NULL) {  
        printf("Connot open the file %s\n",file2);  
    }  
    strftime(buf,32,"%Y-%m-%d %H:%M:%S",localtime(&tmp));  
    printf("%s\n",buf); /*print the system time*/  
  
    for(i=0;i<SIZE;i++) {  
        vector[i]=0;  /*set 0*/  
    }  
  
    while(!feof(fp1)) { /* the check process*/  
      
        fgets(ch,ARRAY_SIZE,fp1);  
        flag=0;  
        tt++;  
        if( GETBIT(vector, HFLPHash(ch,len(ch))%MAX) ) {      
            flag++;  
        } else {  
            SETBIT(vector,HFLPHash(ch,len(ch))%MAX );  
        }     
  
        if( GETBIT(vector, StrHash(ch,len(ch))%MAX) ) {   
            flag++;  
        } else {  
            SETBIT(vector,StrHash(ch,len(ch))%MAX );  
        }  
          
        if( GETBIT(vector, HFHash(ch,len(ch))%MAX) )   {  
            flag++;  
        } else {  
            SETBIT(vector,HFHash(ch,len(ch))%MAX );  
        }  
  
        if( GETBIT(vector, DEKHash(ch,len(ch))%MAX) ) {  
            flag++;  
        } else {  
            SETBIT(vector,DEKHash(ch,len(ch))%MAX );  
        }   
          
        if( GETBIT(vector, TianlHash(ch,len(ch))%MAX) ) {  
            flag++;  
        } else {  
            SETBIT(vector,TianlHash(ch,len(ch))%MAX );  
        }  
  
        if( GETBIT(vector, SDBMHash(ch,len(ch))%MAX) )  {  
            flag++;  
        } else {  
            SETBIT(vector,SDBMHash(ch,len(ch))%MAX );  
        }  
  
        if(flag<6)  
            num2++;       
        else              
           fputs(ch,fp2);  
      
        /*  printf(" %d",flag); */        
    }  
    /* the result*/  
    printf("\nThere are %d urls!\n",tt);  
    printf("\nThere are %d not repeated urls!\n",num2);  
    printf("There are %d repeated urls!\n",tt-num2);  
    fclose(fp1);  
    fclose(fp2);  
    return 0;  
}  
  
  
/*functions may be used in the main */  
unsigned int len(char *ch)  
{  
    int m=0;  
    while(ch[m]!='\0') {  
        m++;  
    }  
    return m;  
}  
  
unsigned int RSHash(char* str, unsigned int len) {  
   unsigned int b = 378551;  
   unsigned int a = 63689;  
   unsigned int hash = 0;  
   unsigned int i = 0;  
  
   for(i=0; i<len; str++, i++) {  
      hash = hash*a + (*str);  
      a = a*b;  
   }  
   return hash;  
}  
/* End Of RS Hash Function */  
  
  
unsigned int JSHash(char* str, unsigned int len)  
{  
   unsigned int hash = 1315423911;  
   unsigned int i    = 0;  
  
   for(i=0; i<len; str++, i++) {  
      hash ^= ((hash<<5) + (*str) + (hash>>2));  
   }  
   return hash;  
}  
/* End Of JS Hash Function */  
  
  
unsigned int PJWHash(char* str, unsigned int len)  
{  
   const unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);  
   const unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt  * 3) / 4);  
   const unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);  
   const unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);  
   unsigned int hash = 0;  
   unsigned int test = 0;  
   unsigned int i = 0;  
  
   for(i=0;i<len; str++, i++) {  
      hash = (hash<<OneEighth) + (*str);  
      if((test = hash & HighBits)  != 0) {  
         hash = ((hash ^(test >> ThreeQuarters)) & (~HighBits));  
      }  
   }  
  
   return hash;  
}  
/* End Of  P. J. Weinberger Hash Function */  
  
  
unsigned int ELFHash(char* str, unsigned int len)  
{  
   unsigned int hash = 0;  
   unsigned int x    = 0;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash = (hash << 4) + (*str);  
      if((x = hash & 0xF0000000L) != 0) {  
         hash ^= (x >> 24);  
      }  
      hash &= ~x;  
   }  
   return hash;  
}  
/* End Of ELF Hash Function */  
  
  
unsigned int BKDRHash(char* str, unsigned int len)  
{  
   unsigned int seed = 131; /* 31 131 1313 13131 131313 etc.. */  
   unsigned int hash = 0;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++)  
   {  
      hash = (hash * seed) + (*str);  
   }  
  
   return hash;  
}  
/* End Of BKDR Hash Function */  
  
  
unsigned int SDBMHash(char* str, unsigned int len)  
{  
   unsigned int hash = 0;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash = (*str) + (hash << 6) + (hash << 16) - hash;  
   }  
  
   return hash;  
}  
/* End Of SDBM Hash Function */  
  
  
unsigned int DJBHash(char* str, unsigned int len)  
{  
   unsigned int hash = 5381;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash = ((hash << 5) + hash) + (*str);  
   }  
  
   return hash;  
}  
/* End Of DJB Hash Function */  
  
  
unsigned int DEKHash(char* str, unsigned int len)  
{  
   unsigned int hash = len;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash = ((hash << 5) ^ (hash >> 27)) ^ (*str);  
   }  
   return hash;  
}  
/* End Of DEK Hash Function */  
  
  
unsigned int BPHash(char* str, unsigned int len)  
{  
   unsigned int hash = 0;  
   unsigned int i    = 0;  
   for(i = 0; i < len; str++, i++) {  
      hash = hash << 7 ^ (*str);  
   }  
  
   return hash;  
}  
/* End Of BP Hash Function */  
  
  
unsigned int FNVHash(char* str, unsigned int len)  
{  
   const unsigned int fnv_prime = 0x811C9DC5;  
   unsigned int hash      = 0;  
   unsigned int i         = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash *= fnv_prime;  
      hash ^= (*str);  
   }  
  
   return hash;  
}  
/* End Of FNV Hash Function */  
  
  
unsigned int APHash(char* str, unsigned int len)  
{  
   unsigned int hash = 0xAAAAAAAA;  
   unsigned int i    = 0;  
  
   for(i = 0; i < len; str++, i++) {  
      hash ^= ((i & 1) == 0) ? (  (hash <<  7) ^ (*str) * (hash >> 3)) :  
                               (~((hash << 11) + (*str) ^ (hash >> 5)));  
   }  
  
   return hash;  
}  
/* End Of AP Hash Function */  
unsigned int HFLPHash(char *str,unsigned int len)  
{  
   unsigned int n=0;  
   int i;  
   char* b=(char *)&n;  
   for(i=0;i<strlen(str);++i) {  
     b[i%4]^=str[i];  
    }  
    return n%len;  
}  
/* End Of HFLP Hash Function*/  
unsigned int HFHash(char* str,unsigned int len)  
{  
   int result=0;  
   char* ptr=str;  
   int c;  
   int i=0;  
   for (i=1;c=*ptr++;i++)  
   result += c*3*i;  
   if (result<0)  
      result = -result;  
   return result%len;  
}  
/*End Of HKHash Function */  
  
 unsigned int StrHash( char *str,unsigned int len)  
 {  
    register unsigned int   h;  
    register unsigned char *p;  
     for(h=0,p=(unsigned char *)str;*p;p++) {  
         h=31*h+*p;  
     }  
  
      return h;  
  
  }  
 /*End Of StrHash Function*/  
  
unsigned int TianlHash(char *str,unsigned int len)  
{  
   unsigned long urlHashValue=0;  
   int ilength=strlen(str);  
   int i;  
   unsigned char ucChar;  
   if(!ilength)  {  
       return 0;  
   }  
   if(ilength<=256)  {  
      urlHashValue=16777216*(ilength-1);  
  } else {   
      urlHashValue = 42781900080;  
  }  
  if(ilength<=96) {  
      for(i=1;i<=ilength;i++) {  
          ucChar=str[i-1];  
          if(ucChar<='Z'&&ucChar>='A')  {  
              ucChar=ucChar+32;  
          }  
          urlHashValue+=(3*i*ucChar*ucChar+5*i*ucChar+7*i+11*ucChar)%1677216;  
      }  
  } else  {  
      for(i=1;i<=96;i++)  
      {  
          ucChar=str[i+ilength-96-1];  
          if(ucChar<='Z'&&ucChar>='A')  
          {  
              ucChar=ucChar+32;  
          }  
          urlHashValue+=(3*i*ucChar*ucChar+5*i*ucChar+7*i+11*ucChar)%1677216;  
      }  
  }  
  return urlHashValue;  
  
 }  
/*End Of Tianl Hash Function*/

问题实例】 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。若是是三个乃至n个文件呢? 
根据这个问 题咱们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿bit,n=50亿,若是按出错率0.01算须要的大概是650亿个bit。 如今可用的是340亿,相差并很少,这样可能会使出错率上升些。另外若是这些urlip是一一对应的,就能够转换成ip,则大大简单了。

相关文章
相关标签/搜索