柱坐标系下的流体力学控制方程组的微分形式的推导

柱坐标系下的流体力学控制方程组的微分形式的推导

直角坐标系下描述

我们以NS方程(Navier-Stokes Equation)为例,来推导控制方程的柱坐标表示。我这里考虑不可压的,密度和粘性系数都为常数的情况。

此时,直角坐标系下的NS方程的表达形式为,
ρ D V D t = p + ρ g + μ 2 V V = 0 \begin{array}{c}{\rho \frac{D \vec{V}}{D t}=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{V}} \\ {\nabla \cdot \vec{V}=0}\end{array}

按分量的形式可以写为:

ρ ( u t + u u x + v u y + w u z ) = P x + ρ g x + μ ( 2 u x 2 + 2 u y 2 + 2 u z 2 ) \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
ρ ( v t + u v x + v v y + w v z ) = P y + ρ g y + μ ( 2 v x 2 + 2 v y 2 + 2 v z 2 ) \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)
ρ ( w t + u w x + v w y + w w z ) = P z + ρ g z + μ ( 2 w x 2 + 2 w y 2 + 2 w z 2 ) \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)

直角坐标系到柱坐标系

如图所示,我们建立直角坐标系和柱坐标系。

在这里插入图片描述

由柱坐标系的定义,我们知道,直角坐标系和柱坐标系满足这样一个关系:

[ r θ z ] = [ x 2 + y 2 arctan ( y / x ) z ] , 0 θ < 2 π \left[ \begin{array}{l}{r} \\ {\theta} \\ {z}\end{array}\right]=\left[ \begin{array}{c}{\sqrt{x^{2}+y^{2}}} \\ {\arctan (y / x)} \\ {z}\end{array}\right], \quad 0 \leq \theta<2 \pi

[ x y z ] = [ r cos θ r sin θ z ] \left[ \begin{array}{l}{x} \\ {y} \\ {z}\end{array}\right]=\left[ \begin{array}{c}{r \cos \theta} \\ {r \sin \theta} \\ {z}\end{array}\right]

假设在直角坐标系中,三个坐标轴方向的单位向量分别表示为 i j k \mathbf{i、j、k} ,在柱坐标系中,三个轴向的单位向量表示为 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} ,那么,如图所示,我们将 i j k \mathbf{i、j、k} 分解到柱坐标系中,将 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} 分解到直角坐标系中,可以得到二者之间的一个关系。

在这里插入图片描述
[ e r e θ e z ] = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] [ i j k ] \left[ \begin{array}{c}{\mathbf{e_r}} \\ {\mathbf{e_\theta}} \\ {\mathbf{e_z}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{\mathbf{i}} \\ {\mathbf{j}} \\ {\mathbf{k}}\end{array}\right]

[ i j k ] = [ cos θ -sin θ 0 sin θ cos θ 0 0 0 1 ] [ e r e θ e z ] \left[ \begin{array}{l}{\mathbf{i}} \\ {\mathbf{j}} \\ {\mathbf{k}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{-sin} \theta} & {0} \\ {\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{c}{\mathbf{e_r}} \\ {\mathbf{e_\theta}} \\ {\mathbf{e_z}}\end{array}\right]

坐标系变换的雅克比矩阵体现了两个坐标系中变量的偏导关系,表示如下:

在这里插入图片描述

柱坐标系下常用算子表示

为了推导不可压NS方程在柱坐标下的表示形式,我们先推导一些常用算子的柱坐标表示(重要但后面不一定全会用到),即:
f = f r e r + 1 r f θ e θ + f z e z f = 1 r r ( r f r ) + 1 r f θ θ + f z z × f = ( 1 r f z θ f θ z ) e r + ( f r z f z r ) e θ + 1 r ( r ( r f θ ) f r θ ) e z 2 f = 1 r r ( r f r ) + 1 r 2 2 f θ 2 + 2 f z 2 \begin{aligned} \nabla f &=\frac{\partial f}{\partial r} \mathbf{e_r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e_\theta}+\frac{\partial f}{\partial z} \mathbf{e_z}\\ \nabla \cdot \boldsymbol{f} &=\frac{1}{r} \frac{\partial}{\partial r}\left(r f_{r}\right)+\frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta}+\frac{\partial f_{z}}{\partial z} \\ \nabla \times \boldsymbol{f} &=\left(\frac{1}{r} \frac{\partial f_{z}}{\partial \theta}-\frac{\partial f_{\theta}}{\partial z}\right) \mathbf{e_r}+\left(\frac{\partial f_{r}}{\partial z}-\frac{\partial f_{z}}{\partial r}\right) \mathbf{e_\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r f_{\theta}\right)-\frac{\partial f_{r}}{\partial \theta}\right) \mathbf{e_z}\\ \nabla^{2} f &=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \end{aligned}

**重要PS:**注意到,这里散度和旋度的定义用到的是的 f f 在柱坐标系下的分量来表示,而一阶和二阶梯度中的 f f 是一个函数,这个函数既可以在直角坐标系下,也可以在柱坐标系下。

因为Tex公式敲起来挺费事的,我这里只证明一下第一个,其他类似。使用坐标系单位向量之间的关系和链式法则。
f = f x + f y + f z = [ ( f r c o s θ f θ 1 r s i n θ ) c o s θ + ( f r s i n θ + f θ 1 r c o s θ ) s i n θ ] e r + [ ( f r 1 r c o s θ f θ 1 r s i n θ ) s i n θ + ( f r s i n θ + f θ 1 r c o s θ ) c o s θ ] e θ + f z e z = f r e r + 1 r f θ e θ + f z e z \nabla f = f_x+f_y+f_z=[(f_r\mathrm{cos \theta-f_\theta\frac{1}{r}\mathrm{sin\theta}})\mathrm{cos \theta}+(f_r\mathrm{sin\theta+f_\theta\frac{1}{r}\mathrm{cos\theta}})\mathrm{sin\theta}]\mathbf{e_r}\\+[(f_r\frac{1}{r}\mathrm{cos \theta-f_\theta\frac{1}{r}\mathrm{sin\theta}})\mathrm{-sin\theta}+(f_r\mathrm{sin\theta+f_\theta\frac{1}{r}\mathrm{cos\theta}})\mathrm{cos\theta}]\mathbf{e_\theta}+f_z\mathbf{e_z}\\=f_r\mathbf{e_r}+\frac{1}{r}f_\theta \mathbf{e_\theta}+f_z\mathbf{e_z}

不可压NS方程柱坐标形式推导

有了上述的工具,我们下一步要做的将Navier-Stokes方程直角坐标表达中的各种算子替换成上述的极坐标表示,整理合并即可。
对于NS方程,对左端求物质导数,NS方程表达为:
ρ V t + ρ V V = p + ρ g + μ 2 V {\rho \frac{\partial \vec{V}}{\partial t}+\rho\vec V \cdot \nabla \vec V=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{V}}

外力项不涉及求导,不发生变换,只要替换相应的变量即可。所以我们只要计算时间导数项,对流项,压强项和粘性项,以及连续性方程。

主要思路

我们想做的事情是,在NS方程的分量表达式

ρ ( u t + u u x + v u y + w u z ) = P x + ρ g x + μ ( 2 u x 2 + 2 u y 2 + 2 u z 2 ) \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
ρ ( v t + u v x + v v y + w v z ) = P y + ρ g y + μ ( 2 v x 2 + 2 v y 2 + 2 v z 2 ) \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)
ρ ( w t + u w x + v w y + w w z ) = P z + ρ g z + μ ( 2 w x 2 + 2 w y 2 + 2 w z 2 ) \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)

当中,将 u , v , w u,v,w 换成 u r , u θ , u z u_r,u_\theta,u_z ,并且我柱坐标系下的三个式子是关于 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} 三个方向的分量,即考虑将三个式子做线性组合,左边对左边,右边多右边:
[ 1 2 3 ] = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] [ 1 2 3 ] \left[ \begin{array}{c}{柱式1} \\ {柱式2} \\ {柱式3}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{直式1} \\ {直式2} \\ {直式3}\end{array}\right]

考虑直角坐标系向量到柱坐标系的替换:
V = [ u v w ] = [ cos θ -sin θ 0 sin θ cos θ 0 0 0 1 ] [ u r u θ u z ] \vec V = \left[ \begin{array}{l}{u} \\ {v} \\ {w}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{-sin} \theta} & {0} \\ {\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{c}{{u_r}} \\ {{u_\theta}} \\ {{u_z}}\end{array}\right]

将其代入,并利用梯度和拉普拉斯算子在柱坐标下的表示公式(不全用到):

f = f r e r + 1 r f θ e θ + f z e z f = 1 r r ( r f r ) + 1 r f θ θ + f z z × f = ( 1 r f z θ f θ z ) e r + ( f r z f z r ) e θ + 1 r ( r ( r f θ ) f r θ ) e z 2 f = 1 r r ( r f r ) + 1 r 2 2 f θ 2 + 2 f z 2 \begin{aligned} \nabla f &=\frac{\partial f}{\partial r} \mathbf{e_r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e_\theta}+\frac{\partial f}{\partial z} \mathbf{e_z}\\ \nabla \cdot \boldsymbol{f} &=\frac{1}{r} \frac{\partial}{\partial r}\left(r f_{r}\right)+\frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta}+\frac{\partial f_{z}}{\partial z} \\ \nabla \times \boldsymbol{f} &=\left(\frac{1}{r} \frac{\partial f_{z}}{\partial \theta}-\frac{\partial f_{\theta}}{\partial z}\right) \mathbf{e_r}+\left(\frac{\partial f_{r}}{\partial z}-\frac{\partial f_{z}}{\partial r}\right) \mathbf{e_\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r f_{\theta}\right)-\frac{\partial f_{r}}{\partial \theta}\right) \mathbf{e_z}\\ \nabla^{2} f &=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \end{aligned}

另外链式法则需要用到两个坐标系变换的求导关系:

在这里插入图片描述

综上进行合并整理,即可。

连续性方程(质量守恒)

由柱坐标下的散度公式,可知不可压连续性条件为:
1 r ( r u r ) r + 1 r ( u θ ) θ + u z z = 0 \frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(u_{\theta}\right)}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0

时间导数项

因为柱坐标变换是对空间的变换,不涉及时间变量,所以时间导数项在直角坐标系下不发生变化,做一个式分量的线性组合即可。
[ u r t u θ t u z t ] = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] [ u t v t w t ] \left[ \begin{array}{c}{\frac{\partial u_r}{\partial t}} \\ {\frac{\partial u_\theta}{\partial t}} \\ {\frac{\partial u_z}{\partial t}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{\frac{\partial u}{\partial t}} \\ {\frac{\partial v}{\partial t}} \\ {\frac{\partial w}{\partial t}}\end{array}\right]

对流项

因为 V \vec V 是一个向量,我们可以分别考虑它的每一个分量:

ρ V f = ρ ( f r u + 1 r f θ v + f z w ) \rho\vec{V}\cdot \nabla f =\rho(\frac{\partial f}{\partial r} {u}+\frac{1}{r} \frac{\partial f}{\partial \theta} {v}+\frac{\partial f}{\partial z} {w})

f f 分别替换为 u , v , w u,v,w ,并将其替换为 u r , u θ , u z u_r,u_\theta,u_z ,合并化简,即可得到对流项。

ρ ( u r u r r + u θ r u r θ u θ 2 r + u z u r z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z}\right)} \end{array}
ρ ( u r u θ r + u θ r u θ θ + u r u θ r + u z u θ z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z}\right)} \end{array}
ρ ( u r u θ r + u θ r u θ θ + u r u θ r + u z u θ z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z}\right)} \end{array}

ρ ( u r u z r + u θ r u z θ + u z u z z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)} \end{array}

打tex比较麻烦,将手算稿纸黏贴如下,( ρ \rho 在外面,先不考虑,下同):

在这里插入图片描述

压强项

我们想要的其实就是直角坐标系中的各个分量在柱坐标系下的表达,由前提到的梯度公式,直接可得:

p = p r e r 1 r p θ <3em;"> uz+

相关文章
相关标签/搜索