网络权重初始化方法总结(上):梯度消失、梯度爆炸与不好的初始化

文章目录 前向传播与反向传播回顾 梯度消失与梯度爆炸 激活函数的影响 权重矩阵的影响 不良初始化 参考 博客: blog.shinelee.me | 博客园 | CSDN 前向传播与反向传播回顾 神经网络的训练过程可以简化成以下步骤, 输入预处理(feature scaling等) 初始化网络weight和bias 前向传播,得到网络输出 计算损失函数,得到当前损失 反向传播,根据链式法则,逐层回
相关文章
相关标签/搜索