leetcode525. Contiguous Array

题目要求

Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and 1.java

Example 1: 数组

Input: [0,1]
Output: 2
Explanation: [0, 1] is the longest contiguous subarray with equal number of 0 and 1.code

Example 2: it

Input: [0,1,0]
Output: 2
Explanation: [0, 1] (or [1, 0]) is a longest contiguous subarray with equal number of 0 and 1.io

Note: The length of the given binary array will not exceed 50,000.class

假设如今有一个由0和1组成的整数数组,问该数组中0和1个数相等的最大的子数组长度。循环

思路一:暴力循环

假设咱们可以算出来从下标0开始全部子数组中0和1的个数,得出numOfZero[i]和numOfOne[i](其实这里无需用两个整数数组来记录,由于0-i这个子数组中1的个数必定等于i+1-numOfZero[i]。map

再对全部子数组按照长度从大到小根据numOfZero开始寻找i-j中0和1相等的状况,一旦找到,就能够结束循环。由于这必定是最长的知足0和1数量相等的子数组。im

public int findMaxLength(int[] nums) {  
    int[] numOfOne = new int[nums.length + 1];  
  
    for (int i = 0; i < nums.length; i++) {  
        if (nums[i] == 0) {  
            numOfOne[i + 1] = numOfOne[i];  
        } else {  
            numOfOne[i + 1] = numOfOne[i] + 1;  
        }  
    }  
    int max;  
    boolean finish = false;  
    for (max = nums.length - nums.length % 2; max > 0; max -= 2) {  
        for (int j = 0; j + max < numOfOne.length; j++) {  
            int curNumOfOne = numOfOne[j+max] - numOfOne[j];  
            int curNumOfZero = max - curNumOfOne;  
            if (curNumOfOne == curNumOfZero) {  
                finish = true;  
                break;  
            }  
        }  
        if (finish) {  
            break;  
        }  
    }  
    return max;  
}

思路二:HASHMAP

换个思路来说,若是将0视为-1,1仍是视为1,则0,1个数相等的子数组中全部元素的和其实为0。假设i-j这个子数组中0和1个数相等,其实等价于0-(i-1)以及0-j这两个子数组中元素的和是相等。所以咱们能够记录0-i子数组的元素和,一旦遇到相等的,就说明该🈯️在以前由某个子数组合成过,将两个下标相减便可获得知足条件的子数组的长度,co

public int findMaxLength2(int[] nums) {  
    int n = nums.length;  
    int[] map = new int[nums.length * 2 + 1];  
    Arrays.fill(map, -2);  
    int sum = n;  
    map[n] = -1;  
    int max = 0;  
    for (int i = 0 ; i<nums.length ; i++) {  
        sum += (nums[i] * 2 - 1);  
        if (map[sum] == -2) {  
            map[sum] = i;  
        } else {  
            max = Math.max(max, i-map[sum]);  
        }  
    }  
    return max;  
}
相关文章
相关标签/搜索