JavaShuo
栏目
标签
[论文笔记]Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
时间 2021-01-02
栏目
图片处理
繁體版
原文
原文链接
作者:Anh Nguyen, Jason Yosinski, Jeff Clune 链接:https://arxiv.org/pdf/1412.1897.pdf 摘要: 本文的工作基于Christian Szegedy的Intriguing properties of neural networks一文,前文是利用箱约束下的L-BFGS算法来改造正确样本,而本文能够利用进化算法(梯度上升)的思想随
>>阅读原文<<
相关文章
1.
对抗样本论文学习:Deep Neural Networks are Easily Fooled
2.
Understanding Neural Networks Through Deep Visualization
3.
Understanding Neural Networks Through Deep Visualization 论文笔记
4.
How transferable are features in deep neural networks? 论文笔记
5.
论文笔记:How transferable are features in deep neural networks?
6.
论文阅读笔记(五十六):Image Super-Resolution Using Deep Convolutional Networks
7.
Deep Neural Networks for Object Detection
8.
论文笔记——Aggregated Residual Transformations for Deep Neural Networks(ResNeXt)
9.
Deep Neural Networks for Object Detection论文翻译
10.
[论文解读] Concolic Testing for Deep Neural Networks
更多相关文章...
•
Docker images 命令
-
Docker命令大全
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
Scala 中文乱码解决
相关标签/搜索
论文笔记
networks
predictions
confidence
easily
high
neural
images
deep
论文
图片处理
MyBatis教程
PHP教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳实践]了解 Eolinker 如何助力远程办公
2.
katalon studio 安装教程
3.
精通hibernate(harness hibernate oreilly)中的一个”错误“
4.
ECharts立体圆柱型
5.
零拷贝总结
6.
6 传输层
7.
Github协作图想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其历史版本
10.
Unity3D(二)游戏对象及组件
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
对抗样本论文学习:Deep Neural Networks are Easily Fooled
2.
Understanding Neural Networks Through Deep Visualization
3.
Understanding Neural Networks Through Deep Visualization 论文笔记
4.
How transferable are features in deep neural networks? 论文笔记
5.
论文笔记:How transferable are features in deep neural networks?
6.
论文阅读笔记(五十六):Image Super-Resolution Using Deep Convolutional Networks
7.
Deep Neural Networks for Object Detection
8.
论文笔记——Aggregated Residual Transformations for Deep Neural Networks(ResNeXt)
9.
Deep Neural Networks for Object Detection论文翻译
10.
[论文解读] Concolic Testing for Deep Neural Networks
>>更多相关文章<<